STATE ENTERPRISE UKRAINIAN INSTITUTE FOR METALLURGICAL WORKS DESIGN

UKRDIPROMEZ SE

Plant EuroCape Ukraine I LLC

Project Sites for Wind Power Plant Units in Pryazovske Rayon of Zaporizhzhia Oblast (First-Priority Operations)

Part Building Site Survey

Project stage Urban Planning Verification

<u>ДТ 349653</u>

identification

Deputy Director of Institute	//signed//	V.G. Lytviak
Project Engineer	//signed//	L.I. Klymenko
Head of Geological and Topographical Department	//signed//	L.I. Klymenko

Dnipropetrovsk 2009 Specialists involved in preparation of this Building Site Survey Finding:

Chief Geologist	//signed//	V.T. Golovko
Task Team Leader	//signed//	G.A. Shtepa
Geologists	//signed// //signed// //signed//	T.V. Lysa V.L. Paravenkov A.A. Kononenko

Building Site Survey Finding for Wind Power Plant Units in Pryazovske Rayon of Zaporizhzhia Oblast (First-Priority Operations)

Table of Contents

- I. Introduction
- II. General
- III. Geology of the surveyed area
- IV. Groundwater conditions
- V. Geotechnical conditions of the area
- VI. Geotechnical conditions of the sites for the designed projects and foundation recommendations References

Text Annexes

- 1. Technical Correspondence between Ukrdipromez SE and Eurocape Ukraine I LLC
- 2. Requirements Specification for the Building Site Survey
- 3. Building Site Survey Program
- 4. Field Data Acceptance Document
- 5. Strip Logs of the Drilling Holes (Drawing Д 80206-337) with Engineering-Geological Passports of the Sites
- 6. Groundwater Chemical Analysis
- 7. Laboratory Test Data Record of Physical and Mechanical Properties of the Soils

Graphical Annexes

- 1. Arrangement of Drilling Points (Drawing M 2300-ΓT)
- Schematic Geological Cross-Sections along Lines I-I' IV-IV' (Drawing Д 80206-339, 4 pages)

1. Introduction

In September of 2009 the Geological and Topographical Department of Ukrdipromez SE carried out a site exploration under the agreement with EuroCape Ukraine I LLC according to the requirements of Diproprom Institute at eight points where WPP units are to be deployed in Pryazovske Rayon of Zaporizhzhia Oblast.

The locations of the WPP units are shown on Diproprom SE Drawing (Annex to the Requirements Specification) # M 2300- Γ T of 8 August 2009. As the drawing does not include an altimetric survey, the holehead heights are shown as 0.00 (ground surface) and the soil layer depth data are shown on the strip logs from the ground surface, which has been agreed upon (see Annex 1, Letter from Mr. L.I. Klymenko, Head of Geological and Topographical Department, to Mr. P. O'Brien).

The exploration holes were drilled by a mechanical percussive-rotary method with ΠБУ-2-119 A drilling rig by a team of I.I. Martynenko. L.S. Yaroshchuk, V.T. Golovko and V.L. Paravenkov took part in the organization of work. G.A. Shtepa, Task Team Leader, was in charge of integrated field operations. The in-situ soil tests and description were carried out by T.V. Lysa and V.L. Paravenkov.

The laboratory tests of soil and groundwater were made by T.I. Zemliana, Head of Ukrdipromez SE Soil Laboratory, and Y.I. Ogiychenko, Laboratory Engineer.

All the geological staff of the Department was involved in the desk study of the field data and laboratory tests and in the preparation of the Building Site Survey Finding.

II. General

The study area is located in the Azov Seaside Geomorphologic Region. This is a territory limited by Donetsky Ridge in the north, the Azov Sea in the south, the Molochna River with the estuary in the west and the Mius River in the east. In terms of origin it is a secondary plain. In hypsometric terms it is a plateau. Its surface is undulating, slightly graded towards the Azov Sea. The river valleys (the Molochna – the Estuary) in the southern part of the Azov Seaside Plateau have a complicated structure. Being deeply cut in and very expanded, they do not correspond to the contemporary river sizes.

The actual survey area abuts on the Azov Sea in the south and is limited with the Molochny Estuary in the west. In geomorphologic terms it is a flat plain (peneplain) with the heights of land varying from 10 to 20. The survey points are scattered across the site with the approximate area 15 x 9 km. The area includes the Villages of Dunayivka, Victorivka, Oleksandrivka, Stepanivka Persha and their neighbouring lands. In terms of administrative division the area belongs to Pryazovske Rayon of Zaporizhzhia Oblast.

In climatic terms this is a subhumid area with the groundwater mainly fed by year-round precipitation. The average annual precipitation does not exceed 300 mm. The average annual air temperature is $+8^{\circ}$ C.

The region of the survey used to be a geological exploration target for natural gas (Ukrvostokneftegazrazvedka) and potable water supply (Pivdenukrgeologia and Zaporozhvodstroy). The materials of these organizations are summarized and published. The publications are used in the parts of this Survey Finding which cover the general issues of geotectonics, stratigraphy, groundwater hydrology and geotechnical characteristics of the deposits in the surveyed area.

The detailed data on each of the eight drilling points are specified in the columns of the drilling holes and the physical and mechanical properties of the soils in each layer.

The Building Site Survey Finding also includes the columns of Zaporozhvodstroy drilling holes located in the region of survey and the schematic geological cross-sections.

III. Geology of the surveyed area

1) The plots for deployment of the wind power plants are located within the northern slope (margin) of the Black Seaside Depression, which is a monocline. The Precambrian granitegneissic crystalline basement is inclined southward and deeply sunk. The embedding is benched. The northern border of the Precambrian abrupt sinking goes along Perekop-Berdiansk-Mariupol line. The crystalline basement faults and sinking occurred in the Jurassic period. After that the sediment accumulation processes prevailed until the early Pleistocene (beginning of the Anthropogene – Quaternary). The sediment accumulation process was complicated with oscillatory motions related to the continuing tectonic genesis.

2) On the Precambrian crystalline basement in the range of depths 1.2 - 0.5 km there are upper cretaceous deposits (Gr₂) consisting mainly of glauconitic sandstones.

3) Tertiary deposits.

Drilling of deep holes (Ukrvostokneftegazrazvedka) revealed a thick mass of Paleogene deposits (Pg_1 , Pg_2 , and Pg_3) above the top of Mesozoic (Cetaceous) deposits. These layers are studied in the most detail in the Molochna River basin in Pryazovske Rayon (the neighbourhood of Stepanivka, Dunayivka and Oleksandrivka Villages).

Here, the Paleogene deposits include carboniferous terrestrial formations of Buchak stage and marine sandy-argillaceous deposits of Kyiv and Kharkiv stages. The terrestrial carboniferous deposits (Pg_1) include a series of alternate grey and black coaly sandy clays with lentils of brown coal and sandy secondary kaolins (terrigenous stratum). These deposits overlap the Cretaceous (or Precambrian) strata transgressively. The thickness of carboniferous deposits varies in a wide range and reaches 20 - 50 m in the lowest sections of the Pretertiary relief.

The carboniferous deposits are increasingly inclined southward, i. e. along the sinking of the crystalline basement. The coal-bearing series, like the whole series of Paleogene deposits, deepens steeply following the basement relief.

The marine deposits of Kyiv stage (stratigraphically overlaying the terrestrial carboniferous deposits) consist of marls.

In the region of Stepanivka, Dunayivka, Oleksandrivka and Prymorsky Posad Villages the lower part of Kyiv stage consists of glauconitic sands and brownish grey and greenish grey coarse sands with quartz gravel. In the Village of Stepanivka the marls of Kyiv stage occur on the Middle Eocene limestones.

A series of greenish glauconitic noncalcareous sandy and clay strata of Kharkiv Stage overlays the marl clays stratigraphically. The aggregate thickness of such strata is 62 - 150 m.

A thick series of Neogene deposits occurs above the top of Paleogene deposits. Within the surveyed area the thickness of such strata varies from 100 to 250 m.

Clays with bands of marl and fine sand are revealed in the neighbourhood of Stepanivka Village at a depth of 250 m. There are also pyrite nodules (Pliocene). In the Sivash neighbourhood and the plots adjacent to the valley of the Molochna River, the Neogene includes sandy strata with silicon pebble (lower Sarmatian stage) and narrow bands of limestones and sandy marls.

4) The Quaternary deposits (Anthropogene) consist mainly of terrestrial sediments. The estuary and marine deposits are only limited to the narrow band along the Azov Sea and the Sivash.

The terrestrial beds include the mass of Aeolian soils and loess loams.

In the large drainless soles the mass of Aeolian soil and loess loams is transformed into greenish grey bottom loams and clays by gleization.

At the shore of the Azov Sea, the Sivash and the Molochny Estuary the stratum of Aeolian soil and loess loams sinks below the sea level in some places. Such sinking is caused by epeirogenic foundering of the seafloor section of the mainland in the Quaternary time.

This study focuses on the use of natural Quaternary (Q) and Tertiary (N_{II}^{2-3}) strata (soils) as bases of foundations.

The geology of the surveyed sites (bottom-up) to the depth of drilled holes includes middle to upper Pliocene deposits consisting of clays (N₂kl).

Marine sandy-argillaceous Cimmerian-Kuyalnik deposits (N_2k-kl) occur above the clays. Above such deposits there are red brown clays of late Pliocene and early Pleistocene $(N_2 - Q_1)$. The Pleistocene loess soils (L_{II-III}) cover the area as a continuous blanket essentially in all places except for erosion valleys and gullies.

The detailed data on the strata occurring on the building sites are shown in the strip logs and the engineering-geological passports of Sites 1-8.

IV. Groundwater conditions

The surveyed area is located in the Dnipro-Molochna hydrogeological region (Index 4.4.6.A – II' (B)-27).

The free aquifer is pervasive in the Anthropogene blanket terrestrial (recent) marine, estuarymarine and lacustrine-marine deposits. The level of the Azov Sea, the Sivash Bay and the Molochny Estuary is the hydrological basis of drainage for this aquifer. Upper and middle Pliocene loams and clays underlay water-bearing silica inequigranular argillaceous sands and less frequent loamy sands.

The phreatic aquifer in the region of Molochny Estuary is limited to the buried high-water bed.

The alluvial water-bearing deposits, which make up terraces I-III above the flood-plain of the Molochna River (Hydrogeological Landscape Systems (HGLS) 6a (II)^I), consist mainly of argillaceous sands, 1 - 18 m thick. The depth of the level occurrence is 0.2 - 10 m. The water-bearing sedimentary alluvia are covered with aeoline-diluvial loams. The confining layer is Pliocene clay loams and clays, which make the first stable regional confining layer from the ground surface.

As a whole, sodium sulphate-chloride water with the salinity from 2-3 to 13 g/dm³ prevails in the Azov Seaside Geomorphologic Region. Total hardness of the water varies from 20.4 to 70.7 mg-eq., pH = 7.4 - 7.8. The flow rate of the drilling holes is 0.2 to 1-2 l/sec. The daily water intake from the wells does not exceed 2 m³, more often being 0.2 - 0.4 m³. The permeability is 1.0 - 7.2 m/day.

The survey carried out directly at the sites resulted in the data shown below, in Table 1:

Hole No. – Lab. No.	Degree of groundwater sulphate aggressiveness to the grades of			
	conc	concrete as per SNiP 2.03.11-85:		
	W_4	W ₆	W_8	
	Portland cement GO	ST 10178-76		
1-16	Non-aggressive	Non-aggressive	Non-aggressive	
1-17	Strongly aggressive	Strongly aggressive	Strongly aggressive	
2-10	Medium-aggressive	Mildly aggressive	Mildly aggressive	
2-9	Strongly aggressive	Strongly aggressive	Strongly aggressive	
3-12	Mildly aggressive	Non-aggressive	Non-aggressive	
3-11	Medium-aggressive	Mildly aggressive	Non-aggressive	
4-24	Mildly aggressive	Non-aggressive	Non-aggressive	
5-18	Strongly aggressive	Medium-aggressive	Non-aggressive	
5-19	Non-aggressive	Non-aggressive	Non-aggressive	
6-25	Mildly aggressive	Non-aggressive	Non-aggressive	
7-21	Non-aggressive	Non-aggressive	Non-aggressive	
8-22	Strongly aggressive	Strongly aggressive	Mildly aggressive	
8-23	Non-aggressive	Non-aggressive	Non-aggressive	
Well (78 Frunze St.,	Strongly aggressive	Medium-aggressive	Mildly aggressive	

Table 1

Dunayivka Village)			
Drilling hole (34	Medium-aggressive	Mildly aggressive	Non-aggressive
Kotovskogo St.,			
Dunayivka Village)			
Well (84 Frunze St.,	Strongly aggressive	Strongly aggressive	Medium-aggressive
Dunayivka Village)			
	Slag portland	cement	
1-16	Non-aggressive	Non-aggressive	Non-aggressive
1-17	Mildly aggressive	Non-aggressive	Non-aggressive
2-10	Non-aggressive	Non-aggressive	Non-aggressive
2-9	Non-aggressive	Non-aggressive	Non-aggressive
3-12	Non-aggressive	Non-aggressive	Non-aggressive
3-11	Non-aggressive	Non-aggressive	Non-aggressive
4-24	Non-aggressive	Non-aggressive	Non-aggressive
5-18	Non-aggressive	Non-aggressive	Non-aggressive
5-19	Non-aggressive	Non-aggressive	Non-aggressive
6-25	Non-aggressive	Non-aggressive	Non-aggressive
7-21	Non-aggressive	Non-aggressive	Non-aggressive
8-22	Non-aggressive	Non-aggressive	Non-aggressive
8-23	Non-aggressive	Non-aggressive	Non-aggressive
Well (78 Frunze St.,	Non-aggressive	Non-aggressive	Non-aggressive
Dunayivka Village)			
Drilling hole (34	Non-aggressive	Non-aggressive	Non-aggressive
Kotovskogo St.,			
Dunayivka Village)			
Well (84 Frunze St.,	Non-aggressive	Non-aggressive	Non-aggressive
Dunayivka Village)	11011 4881000110		
	Iphate-resistant cement	ts GOST 22266-76	
1-16	Non-aggressive	Non-aggressive	Non-aggressive
1-17	Non-aggressive	Non-aggressive	Non-aggressive
2-10	Non-aggressive	Non-aggressive	Non-aggressive
2-9	Non-aggressive	Non-aggressive	Non-aggressive
3-12	Non-aggressive	Non-aggressive	Non-aggressive
3-11	Non-aggressive	Non-aggressive	Non-aggressive
4-24	Non-aggressive	Non-aggressive	Non-aggressive
5-18	Non-aggressive	Non-aggressive	Non-aggressive
5-19	Non-aggressive	Non-aggressive	Non-aggressive
6-25	Non-aggressive	Non-aggressive	Non-aggressive
7-21	Non-aggressive	Non-aggressive	Non-aggressive
8-22	Non-aggressive	Non-aggressive	Non-aggressive
8-22	Non-aggressive	Non-aggressive	Non-aggressive
Well (78 Frunze St.,			
Dunayivka Village)	Non-aggressive	Non-aggressive	Non-aggressive
Drilling hole (34	Non-aggressive	Non-aggressive	Non-aggressive
Kotovskogo St.,			
Dunayivka Village)			
Well (84 Frunze St.,	Non-aggressive	Non-aggressive	Non-aggressive
Then (of Finite St.,	1 ton-aggressive	1 ton-aggressive	1 ton-aggressive

The degree of groundwater attack in terms of chloride content (Cl⁻ - $883.50-14,202.50 \text{ mg/dm}^3$) against concrete reinforcement varies from non-aggressive to mildly aggressive for permanently immersed structures and from medium- to strongly aggressive for regularly wetted structures. The estimation of groundwater aggressiveness in terms of other indices and the water test data are provided in Text Annex 6.

The fluctuations of water levels in the wells of the villages neighbouring the estuary are negligible. Only in spring the level rises by 1.0 - 1.5 m. As a whole, for the period of 30 - 40 years the level has fallen by 1.2 - 1.5 m. The reason is that the Molochny Estuary as the base level of drainage is blocked by surfy alluvium and the connection with the sea is disrupted and, therefore, the estuary is not being replenished. This leads to shoaling of the estuary, i. e. lowering of the hydrological base level of drainage. The result is general recession of water level in the wells. The groundwater is recharged only at the expense of precipitation, which does not exceed 300 mm a year. The stable thickness and essentially general occurrence of Kuyalnik clays limit the possibility for the aquifer to be replenished at the expense of the underlying Paleogene aquifer systems.

In drilling hole 5 (the closest to the estuary) the perched groundwater was observed at a depth of 0.9 m, which is caused by the influence of surface water body. The piezometric level of the confined aquifer limited to silica sands (N_2k -kl) is observed at a depth of 2.20 m in this drilling hole.

In drilling holes 1, 2, 3, 4, 6 and 7 the heights of the free phreatic aquifer (perched groundwater) coincide with the heights of the confined aquifer limited to the sands. It is the evidence of the hydraulic connection between these aquifers within the study area. The analysis of the built schematic geological cross-sections (III-III' – IV-IV') does not contradict to the aforesaid.

The abnormally high salinity of $20,204 \text{ mg/dm}^3$ is observed in drilling hole 2.

In the other drilling holes the values vary from 2,700 to $11,720 \text{ mg/dm}^3$ and in each hole the salinity increases with the increase of sampling depth: hole 1 (2,702 to 10,894 mg/dm³), hole 5 (2,912 to 7,816 mg/dm³), hole 3 (2,466 to 5,236 mg/dm³).

Three water samples from wells: 78 Frunze St. – 4,660 mg/dm³; 34 Kotovskogo St. – 4,280 mg/dm³; 84 Frunze St. – 5,722 mg/dm³.

Therefore, the groundwater analyses do not disprove the hydraulic connection between the aquifers, though the degree of stagnation increases with the depth despite the fact that the permeability of aquifers also increases with the depth.

Such state indicates that precipitation is the main source of feed for the aquifer of perched groundwater. Its desalinating effect is the most intensive during the period of snow melting in winter and spring. As during the recent decades the precipitation is 200-300 mm/year, their impact on the desalination has slowed down.

As no water loss is expected to be caused by any industrial or engineering factors, there will be no changes in the mode of levels and hydrochemistry. The nature of the changes will be only seasonal. Judging from the fluctuations of water levels in the wells, the actual fluctuations do not exceed ± 1.00 m vs. those observed at the time of drilling (low water: July, flood: March).

V. Geotechnical conditions of the area

In accordance with its objectives, the survey paid a special attention to the Quaternary and the upper part of Tertiary (Neogene) deposits as bases of foundations. The points of survey cover the approximate area of 15×9 km. All this area is covered with Quaternary deposits down from the top. Loess, which was formed during all the period of Pleistocene, prevails among the Quaternary deposits. It covers the interfluvial plains and the buried river valleys and terraces like a blanket. Such deposits are absent only in the gullies, the river high-water beds where the sandy alluvium occurs down from the top, and in the denudation uplands. In most of the area the thickness of the loess cover reaches 20 m.

The loess includes aeoline-diluvial, residual and talus, and alluvial Quaternary types. The alluvial type is observed in drilling hole 2. As a whole, the loess series is made up of three (less frequent four) rhythms, each including fossil soil, subhorizon of loess and subhorizon of loess loams (Krayev 1971, Veklich 1968). Within the surveyed area no full rhythm of lithogenesis is observed because of the long erosion process following the aeoline-diluvial sediment accumulation.

The sand and pulverescent fractions of the loess include more than 50 minerals. The rockforming minerals are quartz (70-95%) and feldspars (5-30%), as well as carbonates (1-10%), mica, gypsum and glauconite. The fine fraction of the loess includes montmorillonite and hydromica. The largest amount of humus is in the fossil soils (0.32 - 1.24%), which is 3-9 times as much as it is in the modern chernozem. The largest content of water-soluble salts is observed in the lower part of the loess stratum and the smallest one is in the upper well-flushed (degraded) horizons of bottom loams (<0.34%). The content of sand fractions decreases and the content of pulverescent and clay fractions increases with the depth. The subsidence of loess soils in the zone of suspended water (above the groundwater table) depends on their age. The subsidence and compressibility decreases and the strength increases with the age of strata.

Characteristics of the marine Neogene clays (depth interval 12 - 40 m)

Moisture at the plastic limit W _p , fractions	0.28 - 0.35
Index of plasticity I _p , fractions	0.33 - 0.43
Density γ , g/cm ³	1.83 – 1.87
Porosity factor e, fractions	0.47 - 0.82
Angle of internal friction, degrees	14-18
Cohesion c, Pa	$0.63 \ge 10^5 - 1.50 \ge 10^5$
Natural moisture W, fractions	0.205 - 0.245
	0.202 0.212

Characteristics of the terrestrial red brown clays (depth interval 0.5 - 9.0 m)

Moisture at the plastic limit W _p , fractions	0.26 - 0.28
Index of plasticity I _p , fractions	0.18 - 0.24
Density γ , g/cm ³	1.96
Dry density $\gamma_{\rm s}$, g/cm ³	1.58
Porosity factor e, fractions	0.67 - 0.72

Angle of internal friction, degrees	
Cohesion c, Pa	

14-17 $0.45 \ge 10^5 - 0.54 \ge 10^5$

The red brown clays make the first stable regional confining layer from the ground surface.

Characteristics of the loess in the Azov Seaside Subregion of the Ukrainian Crystalline Core-Area

Ground particle number density we	2.63 - 2.81 g/cm ³ , 2.73 g/cm ³ on average
Oround particle number density γ_d	
Density γ	$1.35 - 2.05 \text{ g/cm}^3$, 1.71 g/cm^3 on average
Dry density γ_s	$1.24 - 1.67 \text{ g/cm}^3$, 1.48 g/cm^3 on average
Porosity n	31.20 – 54.00 %, 41.60 % on average
Natural moisture W	0.088 – 0.321 fractions
Moisture at the liquid limit W ₁	0.250 - 0.667 fractions, 0.412 fractions on average
Moisture at the plastic limit W _p	0.117 - 0.396 fractions, 0.237 fractions on average
Index of plasticity Ip	0.08 - 0.20 fractions, 0.175 fractions on average
Coefficient of relative subsidence at	a pressure of 3 kg/cm ² $-$ 0.014
Angle of internal friction φ	$22 - 25^{\circ}$, 25° on average
Cohesion c	$0.09 \ge 10^5 - 0.60 \ge 10^5$, $0.23 \ge 10^5$ Pa on average

In accordance with par. 2.17 and 2.18 of Ukrainian Building Code (DBN) A.2.2-1-2003 (Environmental Impact Assessment during Design and Construction), the preliminary data on the engineering data of the designed facilities and the geological conditions of the soil environment for the foundations indicate the following:

- no negative impact of the projects on the sustainability of geological environment is expected;
- no negative impact of the geological environment on the facilities is expected.

A pattern was revealed in the process of drilling: the time of the casing pipes in the soil environment is directly proportional to the force of soil sticking to the pipes. Such process is called a silica gel skinning effect at the soil – casing pipe interface.

The aforesaid indicates that in the event of piling such processes will increase the friction against the side face of piles. The study of analogues in the similar geological conditions show that the pile capacity may increase by a factor of 1.5 with time as compared with the data from the tests held 1 - 1.5 month after the palification.

Characteristics of the seismic conditions

The relative proximity to the Crimean Mountain Ridge, which is a geosynclinal belt, makes it necessary to consider the seismicity conditions in the surveyed area.

In accordance with DBN B.1.1-12: 2006 (Protection against Hazardous Geological Processes and Harmful Impacts. Kyiv, 2006), this area has the following characteristics:

- probability of 1% increase in MSK-64 seismic intensity within 50 years (the seismic gap is 5,000 years) is 7 points on a 1-10 scale;
- probability of 5% increase in MSK-64 seismic intensity within 50 years (the seismic gap is 1,000 years) is 6 points on a 1-10 scale;
- probability of 10% increase in MSK-64 seismic intensity within 50 years (the seismic gap is 500 years) is 6 points on a 1-10 scale.

VI. Geotechnical conditions of the sites for the designed projects and foundation recommendations

In the surveyed sites the loess limons are not collapsible. But during the construction the foundation pits must not get wet with precipitation because the loess soils change their consistency if saturated with water, which leads to reduction of the specific cohesion and the modulus of deformation. If a foundation pit has large horizontal dimensions, saturation with water inside the pit will not always be equal and by the time of concrete casting the characteristics of the same layer of loess soils may be different in different ends of the pit, which is not allowable. Therefore, the wetting of pits must be strongly prevented.

Given the structural embedment of the foundations to a depth of 4.00 m and that the future grade levels will slightly exceed the existing ground levels (up to 1.5 m), at seven of the sites (except for Site 2) the bottom of the foundation pits will be in the Quaternary limons, mainly in loess soils.

These grounds are quite different at different sites (E is 10 to 23 MPa). Consequently, the structural concepts of the foundation will not be standard. The Requirements Specification does not include the expected vertical and horizontal foundation loads. But the horizontal loads will be determinative for the foundation design, given the height of the structures (about 100 m) and the wind loads against the wind power plant units. It appears that the horizontal loads may be reacted properly by means of piling. The piles of 350 x 350 mm, 10 m long (abutting against the Tertiary clays or sands) will have a capacity of about 80 t. And the pile capacity will increase with time (0.5 - 1 year) up to 90-100 t because of silica gel skinning at the pile – soil interface. The horizontal pile loads are 5-7 t. The pulling load is 12 t. At the site of hole 2 the greenish grey clay may serve as the natural bed, but the horizontal load accommodation with the varying vector of wind load application may necessitate piling.

Where the 4-meter bottom of the foundation pit comes upon plastic loess loams, it may be advisable to lay a bed under the foundations or under the caps of pile field. Such bed should be made of crushed magmatic silicate rocks (granite, gneiss, migmatite) or of cast blast-furnace slag of stable structure not susceptible to ferrous and silicate decomposition.

The detailed characteristics of soils at the surveyed sites and the detailed recommendations on foundation are described in the engineering-geological passports of the sites.

References

A. Scientific and technical literature

- 1) V.T. Bondarchuk. "Geology of the Ukrainian SSR", Radianska Shkola, Kyiv, 1963
- S.A. Ruban, M.A. Shynkarevsky. "Hydrogeological Estimations and Forecasts of the Groundwater Conditions in Ukraine", Publishing House of the Ukrainian State Geological Survey Institute, Kyiv, 2005
- Geology of the USSR, Volume V (Ukraine and Moldavia), Gosgeoltechizdat, Moscow, 1958
- 4) Hydrogeology of the USSR, Volume V (Ukraine), Nadra Publishing House, Moscow, 1971
- 5) Geological Engineering of the USSR, Volume I (Russian Platform), Publishing House of Moscow State University, Moscow, 1978
- 6) S.A. Ruban, "Application of Natural Groundwater Condition Assessment and Forecast for Estimation of Infiltration Recharge", *The Mineral Resources of Ukraine*, Issue 3, 2008, Kyiv

B. Reference literature

- 1. Soil Survey for Construction. Ukrainian Building Code (DBN) A.2.1-1-2008. Ministry of Regional Development and Construction of Ukraine, Kyiv, 2008
- Foundations of Buildings and Structures. USSR Building Code and Regulations (SNiP) 2.02-83. Gosstroy of the USSR, Moscow, 1984
- 3. Guidelines for Design of Buildings and Structures. N.M. Gersevanov NIIOSP, Moscow, Stroyizdat, 1978.
- 4. Building Structure Corrosion Prevention. SNiP 2.03.11-85. State Construction Committee of the USSR, Moscow, 1986
- 5. I.S. Komarov. "Geological Engineering of the USSR", Volume I. Publishing House of Moscow State University, Moscow, 1978

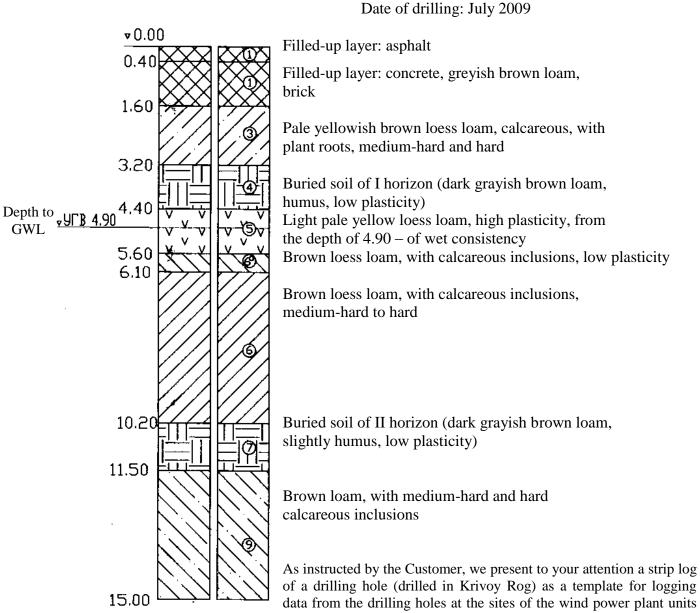
STATE ENTERPRISE "UKRAINIAN INSTITUTE FOR METALLURGICAL WORKS DESIGN" UKRDIPROMEZ SE

17 Lenina Naberezhna, Dnipropetrovsk 49000 Ukraine Telegraph: Dnipropetrovsk, 70, Ukrdipromez, teletype: 143284 PIVONIA Telephone: (056) 756 23 51, fax (056) 778 10 89, (056) 756 20 00 E-mail: <u>postmaster@gipromez.dp.ua</u> <u>gipromez@ceo.com.ua</u> Website: <u>www.gipromez.com.ua</u> Acct.: 260000016470 in Dnipropetrovsk Branch of Ukreksimbank OJSC MFO 305675, EDRPOU 00188311, IPN 001883104023, Certificate No. 40377434

4 September 2009

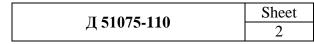
To: Mr. Peter Justin O'Brien Director EuroCape Ukraine I LLC

Dear Mr. O'Brien,


In response to your request, please see attached the standard sample of a strip log.

Attachment: 1 copy.

Sincerely,


//signed//

L.I. Klymenko Head of Geological and Topographical Department, Ukrdipromez SE Drilling Hole 6202 Scale 1:100

in Pryazovske Rayon of Zaporizhzhia Oblast. 'GWL' abbreviation means 'groundwater level'. Since no altimetric survey is being carried out at the moment, the holehead height is defined as $\nabla 0.00$.

Prepared by:	//signed// A.A. Kononenko
Checked by:	//signed// G.A. Shtepa

STATE ENTERPRISE "STATE INSTITUTE FOR INDUSTRIAL DESIGNS" **DIPROPROM SE**

 74-a Patriotychna St., Zaporizhzhia 69005 Ukraine

 Fax:
 (061) 289 86 02, 289 86 28

 E-mail:
 giproprom@mail.zp.ua

 Telephone:
 220 93 01, 289 86 00

 Acct.:
 26005050790001 in Industrialbank JSCB, Zaporizhzia, MFO 313849, EDRPOU 32343302

August 19, 2009

Ref. # 02/174

To: Mr. L.I. Klymenko Head of Geological and Topographical Department Dipromez SE E-mail: <u>postmaster@gipromez.dp.ua</u>

RE: DESIGNING THE 450 MW WIND POWER PLANT IN PRYAZOVSKE RAYON

Dear Mr. Klymenko,

Please see attached the Requirements Specification for the Soil Survey at the Building Sites of Wind Power Plant Units in Pryazovske Rayon of Zaporizhzhia Oblast.

Attachment: Requirements Specification, Drawing M 2300-FT.

With kind regards,

//signed//

I.Y. Brodsky Head of Thermotechnical Department

REQUIREMENTS SPECIFICATION for the Building Site Survey for Wind Power Plant Units in Pryazovske Rayon of Zaporizhzhia Oblast (First-Priority Operations)

- 1. A separate site for the designed construction shall be located under each tower supporting a wind energy-generating unit.
- In accordance with this specification the priority is to drill 10 holes: eight under the wind-power units and two under 100 m high wind monitoring towers. The depth of 9 holes shall be 20 m but not less than the thickness of the collapsible layer. One drilling hole for the tower shall be 30 m deep.
- 3. The Building Site Survey Finding based on this specification shall include all the data necessary to determine the structure and the cost of the foundations in the urban planning verification (par. 3.48 of USSR Building Code and Regulations (SNiP) 1.02.07-87).
- 4. The groundwater survey shall be carried out in accordance with par. 3.81 of SNiP 1.02.07-87 and par. 3.113 of the Guidelines to SNiP 2.02-83, M. 1986, developed by I.M. Gersevanov NIIOSP.
- 5. The building site survey shall be performed in accordance with the guidelines of Ukrainian Building Code (DBN) A 2.1-1-2008 subject to the concretely defining paragraphs of the above guidelines developed earlier by a main Research and Development Institute of the sector (PNIIIS, NIIOSP and others).
- 6. In terms of general technical characteristics of the facilities in the sector, all the design objects belong to Responsibility Class I (Higher) in accordance with State Standard of the USSR (GOST) 27751-88 (*Reliability of Building Structures and Foundations*).
- 7. The Building Site Survey Finding shall include data on any potential adverse conditions of the natural and geological environment (seismicity, landslides, declining level of seashores, karst, subsidence, heaving, swelling, etc.)
- 8. The finding shall correspond to all the requirements of DBN 2.1-1-2008 and other guidelines.
- 9. The coordinates of the drilling holes under the wind-power units and the location site plan are attached. The coordinates of the towers will be provided additionally by the customer.
- 10. Specification of the structures:
- a. Height: 100 m;
- b. Structural embedment: 4 m;
- c. Estimated area of the tower: 17 m x 17 m.

Attachment: Drawing M 2300-FT.

//signed//

I.Y. Brodsky Project Engineer

PROGRAM

OF BUILDING SITE SURVEY OPERATIONS

I. <u>GENERAL</u>

- 1. Name of plant or office: <u>EuroCape Ukraine I LLC</u>.
- 2. Requirements Specification No.: no number.
- 3. Customer (department issuing the Requirements): Diproprom Institute.
- 4. Topographic basis with master plan (or with plot boundaries): <u>Arrangement of Drilling Points</u>.
- 5. Official responsible for occupational safety in the department: <u>L.I. Klymenko,</u> <u>Head of Geological and Topographical Department</u>.

II. <u>ESTIMATED SCOPE OF WORK</u>

- 6. Number of drilling holes (open test pits): <u>8</u>.
- 7. Depth of drilling holes (open test pits): <u>20 m</u>.
- 8. Total meterage: <u>160 m</u>.
- 9. Number of static penetration test points: -.
- 10. Static penetration depth: <u>- m</u>.
- 11. Total meterage: <u>- m</u>.

III. WORKING PROCEDURE

- 12. The drilling shall be carried out by means of cable tool percussion and rotary method.
- 13. Before the operations the points of drilling shall be approved by the Heads of Dunayivka and Oleksandrivka Village Councils.
- 14. From 100% of holes (open test pits) <u>97</u> monolith samples shall be taken with testing.
- 15. From 30% of holes $\underline{8}$ samples of groundwater shall be taken.
- 16. Horizontal and vertical positioning of $\underline{8}$ drilling holes shall be arranged.
- 17. Additional operations: <u>-</u>.

IV. ORGANIZATION OF WORK

- 18. Assumed seasonal period of operations (due to adverse weather conditions): in accordance with the master plan.
- 19. The samples of soils and groundwater shall be brought to the laboratory by midget car.

V. <u>DELIVERABLES</u>

- 20. The input geological data for design shall be provided to the customer.
- 21. The Building Site Survey Finding shall be sent to the customer, archived for office use.

The Program of Operations was prepared by //signed// G.A. Shtepa.

INSPECTION DOCUMENT

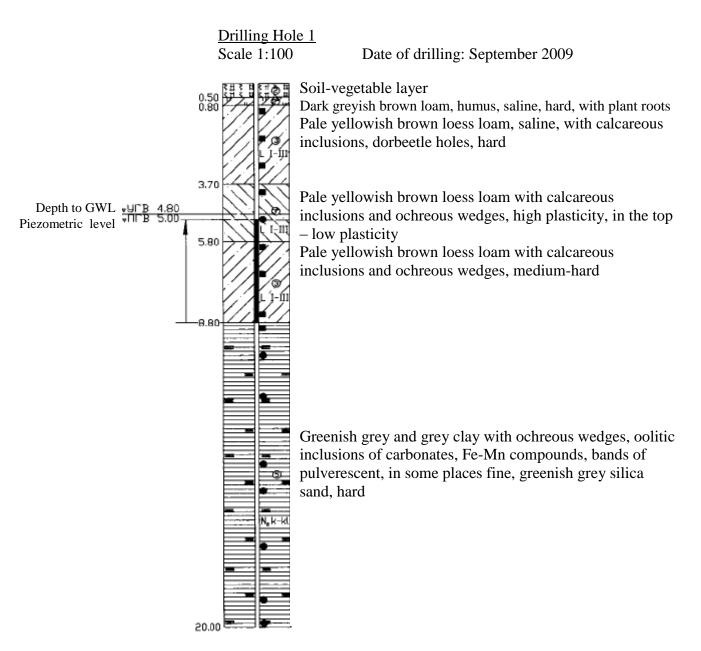
Acceptance inspection of Building Site Survey <u>"Sites for Wind Power Plant Units in Pryazovske</u> <u>Rayon of Zaporizhzhia Oblast (First-Priority Operations)</u>" of September – October 2009. This Inspection Document is prepared by Mr. G.A. Shtepa at the site of <u>EuroCape Ukraine I LLC</u> to certify inspection and acceptance of the building site soil and groundwater survey carried out in accordance with the requirements specification without number issued by <u>Diproprom</u> Institute.

The inspection revealed the following:

- 1. Program (requirements specification) for field work: available.
- 2. Approval of the drilling holes location by the leading underground service line enterprises: approved.
- 3. The number and depth of the drilling holes location <u>correspond</u> to the program (requirements specification).
- 4. <u>No</u> development work was carried out.
- 5. The number of samples of soil monoliths, soils, disturbed structure and groundwater <u>corresponds</u> to the program (requirements specification).
- 6. The packing, transportation and storage of the soil and groundwater sampling materials <u>correspond</u> to the regulations.
- 7. The technical documentation was prepared on the site.
- 8. Defects revealed during the acceptance were corrected by the contractor, <u>Mr. G.A.</u> <u>Shtepa, Task Team Leader</u>.
- 9. The field work on the building site soil and groundwater survey is accepted as <u>satisfactory</u>.

Task Team Leader //signed// G.A. Shtepa

10. Technical documentation delivered:

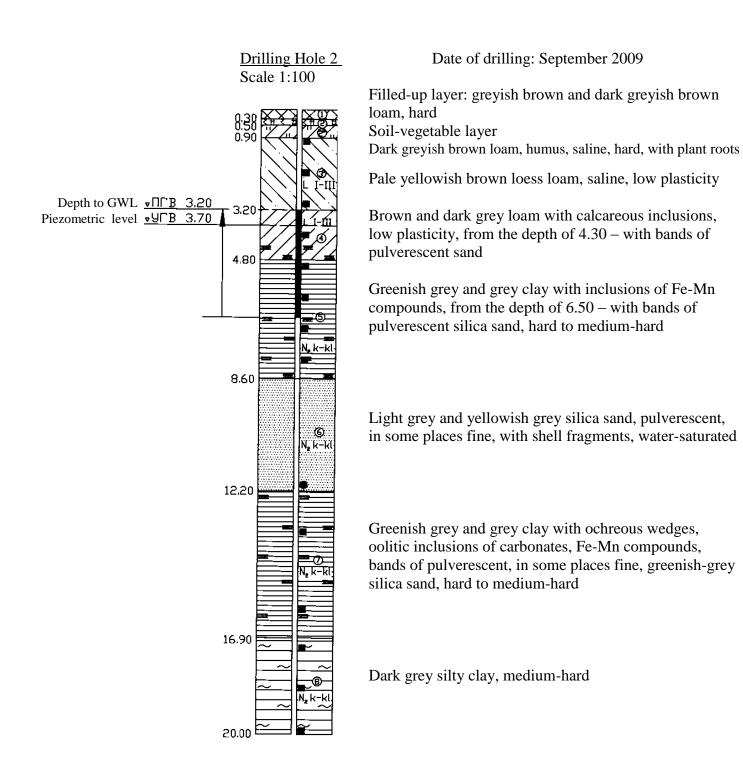

- 1/ Drill logs $\underline{3}$ ea.
- 2/ Field geological cross-sections <u>No</u>
- 3/ Development work logs <u>No</u>
- 4/ Groundwater unloading logs <u>No</u>.

Comments on the site: <u>No</u>.

Task Team Leader//signed//G.A. ShtepaComments on the site: No.Final evaluation of the deliverable: satisfactory.

Head of Department //signed// L.I. Klymenko

Date: 20 October 2009

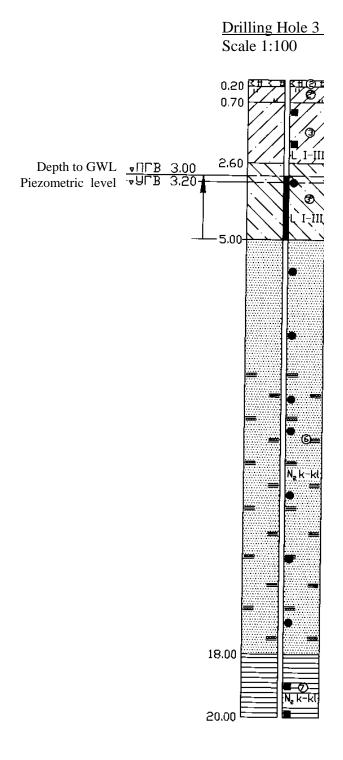


						Д	L 80206-3	37	
Measure Proj. Eng. Head of Dpt.	Q-ty	Sheet Klymenko Klymenko	Doc. No.	Signature Signed Signed	Date Oct. 2009 Oct. 2009	EuroCa Sites for Wind	pe Ukrain	ne I LL Sheet	C Number
-				-		Power Plant Units in		No.	of Sheets
Chief Geolog TTL	ist	Golovko Shtepa		Signed Signed	Oct. 2009 Oct. 2009	Pryazovske Rayon of Zaporizhzhia Oblast (First- Priority Operations)	Feasibility Study	1	9
Geologist Geologist		Kononenko Lysa)	Signed Signed	Oct. 2009 Oct. 2009		© Ukrdipromez SE 2009		SE 2009
Reg. Control		Volkov		Signed	Oct. 2009	Strip logs		GTD	

Engineering-Geological Passport, Site #1

Soil Characteristics	EGE-3	EGE-3 ^a	EGE-5			
Standard Values						
Natural moisture W, fractions	0.182	0.238	0.198			
Density γ , g/cm ³	2.02	1.94	2.07			
Dry density $\gamma_{\rm s}$, g/cm ³	1.71	1.59	1.72			
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69	2.70			
Porosity n, %	36.35	40.09	36.30			
Porosity factor e, fractions	0.577	0.692	0.570			
Degree of saturation S _r , fractions	0.860	0.844	0.952			
Moisture at full saturation W _{sat} , fractions	0.215	0.257	0.211			
Moisture at the liquid limit W _L , fractions	0.320	0.300	0.289			
Moisture at the plastic limit W _p , fractions	0.190	0.175	0.166			
Index of plasticity I _p , fractions	0.13	0.126	0.124			
Index of consistency I _L , fractions	<0	0.500	0.384			
Loose density, g/cm ³	-	-	-			
Packed density, g/cm ³	-	-	-			
Angle of repose, air-dry, degrees	-	-	-			
Angle of repose, under water, degrees	-	-	-			
Modulus of deformation E, MPa	22	11	30			
Angle of internal friction φ , degrees	25	22	20			
Specific cohesion, kPa	36.00	25.00	37.00			
Esti	mated Values of Bearing Capacity	, Confidence Factor α=0.9				
Density γ , g/cm ³	1.98	1.90	2.03			
Angle of internal friction φ , degrees	22	19	17			
Specific cohesion c, kPa	24	17.00	25.00			
Estimated Values of Deflections, Confidence Factor α=0.85						
Density γ , g/cm ³	2.02	1.94	2.07			
Angle of internal friction φ , degrees	25	22	20			
Specific cohesion c, kPa	36	25.00	37.00			

At the structural embedment to a depth of 4 m the bottom of the foundation pit should be deepened by 0.5 m and the turn-over layer should be replaced with crushed granite or cast blast-furnace slag of stable structure (which will serve the bed for piling caps). The piles cut through layer 3, with the foot of the pile cutting into clay of layer 5.


Prepared by:	//signed//	T.V. Lysa
Checked by:	//signed// V.	T. Golovko

П 90206 227	Sheet
Д 80206-337	2

Engine	ering.G	ological	l Passport	Site #2
Lugine	ci mg-00	ologica	ι ι αδέρυι ι	, SILC $\pi \Delta$

Soil Characteristics	EGE-3 ^a	EGE-4	EGE-5	EGE-6	EGE-7	EGE-8
	Standa	ard Values				
Natural moisture W, fractions	0.240	0.203	0.209		0.302	0.407
Density γ , g/cm ³	1.93	2.08	2.05		1.95	1.81
Dry density γ_{s} , g/cm ³	1.56	1.73	1.70		1.51	1.29
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69	2.69		2.71	2.68
Porosity n, %	42.47	35.69	36.91		44.28	52.05
Porosity factor e, fractions	0.739	0.555	0.592		0.815	1.086
Degree of saturation S _r , fractions	0.890	0.980	0.950		1.002	1.01
Moisture at full saturation W _{sat} , fractions	0.270	0.210	0.220		0.301	0.400
Moisture at the liquid limit W_{L} , fractions	0.330	0.290	0.360		0.498	0.630
Moisture at the plastic limit W _p , fractions	0.190	0.170	0.200		0.263	0.360
Index of plasticity I _p , fractions	0.13	0.12	0.16		0.235	0.270
Index of consistency I _L , fractions	0.360	0.280	0.08		0.152	0.170
Loose density, g/cm ³	-	-	-	1.33	-	-
Packed density, g/cm ³	-	-	-	1.66	-	-
Angle of repose, air-dry, degrees	-	-	-	37	-	-
Angle of repose, under water, degrees	-	-	-	33	-	-
Modulus of deformation E, MPa	11	19	29	11	23	10
Angle of internal friction φ , degrees	22	24	22	30	17	15
Specific cohesion, kPa	25.00	30.00	53.95	4.0	31.70	31.70
Estimated V	alues of Bearing O	Capacity, Confider	nce Factor α=0.9)		
Density γ , g/cm ³	1.89	2.04	2.01	1.94	1.91	1.78
Angle of internal friction φ , degrees	20	21	19	27	15	13
Specific cohesion c, kPa	17.00	20	35.97	3.00	21.13	21.13
Estimated	Values of Deflect	ions, Confidence	Factor α =0.85			
Density γ , g/cm ³	1.93	2.08	2.05	1.98	1.95	1.81
Angle of internal friction φ , degrees	22	24	22	30	17	15
Specific cohesion c, kPa	25.00	30.00	53.95	4.00	31.70	31.70

At the structural embedment to a depth of 4 m it seems expedient to excavate the pit down to the top clay of layer 5.

Date of drilling: September 2009

Soil-vegetable layer

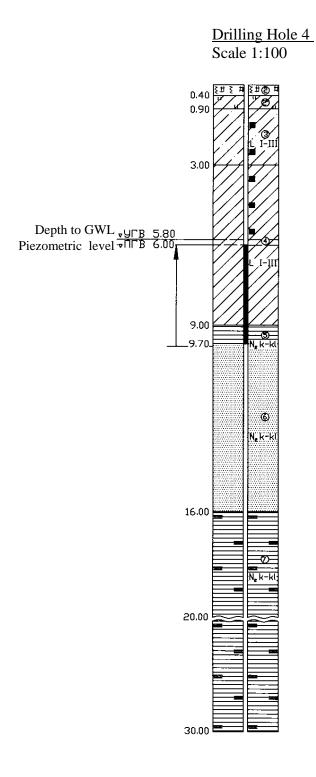
Dark greyish brown loam, humus, saline, hard, with plant roots

Pale yellowish brown loess loam, saline, hard to medium-hard

Pale yellowish brown loess loam, saline, low plasticity to high plasticity

Light grey and yellowish grey silica sand, fine, in some places pulverescent, water-saturated, from the depth of 9.00 - with thin bands of clay

Greenish grey and grey clay with ochreous wedges, oolitic inclusions of carbonates, Fe-Mn compounds, hard to medium-hard


> Prepared by: //signed// T.V. Lysa Checked by: //signed// V.T. Golovko

Д 80206-337		Sheet
		3
D	•	1 1 (0 105)

Soil Characteristics	EGE-3	EGE-3 ^a	EGE-6	EGE-7		
Standard Values						
Natural moisture W, fractions	0.200	0.249		0.283		
Density γ , g/cm ³	1.99	1.95		1.97		
Dry density γ_{s} , g/cm ³	1.66	1.57		1.54		
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.70	2.69		2.71		
Porosity n, %	38.41	4.25		43.36		
Porosity factor e, fractions	0.624	0.709		0.769		
Degree of saturation S _r , fractions	0.870	0.911		1.000		
Moisture at full saturation W _{sat} , fractions	0.230	0.264		0.280		
Moisture at the liquid limit W _L , fractions	0.320	0.293		0.520		
Moisture at the plastic limit W _p , fractions	0.180	0.163		0.270		
Index of plasticity I _p , fractions	0.14	0.130		0.25		
Index of consistency I _L , fractions	0.15	0.662		0.05		
Loose density, g/cm ³	-		1.25	-		
Packed density, g/cm ³	-		1.59	-		
Angle of repose, air-dry, degrees	-		38	-		
Angle of repose, under water, degrees	-		34	-		
Modulus of deformation E, MPa	22	11	11	23		
Angle of internal friction φ , degrees	24	22	30	20		
Specific cohesion, kPa	25.00	25.00	4.00	47.00		
Estimated Values of Bearing C	apacity, Confid	dence Factor $\alpha=0$.	9			
Density γ , g/cm ³	1.95	1.91	1.94	1.93		
Angle of internal friction φ , degrees	21	19	27	17		
Specific cohesion c, kPa	17.00	17.00	3.00	31.00		
Estimated Values of Bearing Ca	apacity, Confid	ence Factor α=0.8	35			
Density γ , g/cm ³	1.99	1.95	1.98	1.97		
Angle of internal friction φ , degrees	24	22	30	20		
Specific cohesion c, kPa	25.00	25.00	4.00	47.00		

Engineering-Geological Passport, Site #3

At the structural embedment to a depth of 4 m the bottom of the foundation pit comes upon high plasticity loess loam. This loam layer (1 m) should be excavated and replaced with crushed granite or cast blast-furnace slag of stable structure (which will serve the bed for foundation or caps of pile field). Surface drainage should be provided while the work is carried out.

Date of drilling: September 2009

Soil-vegetable layer

Dark greyish brown loam, humus, saline, hard, with plant roots

Pale yellowish brown loess loam, saline, hard to medium-hard

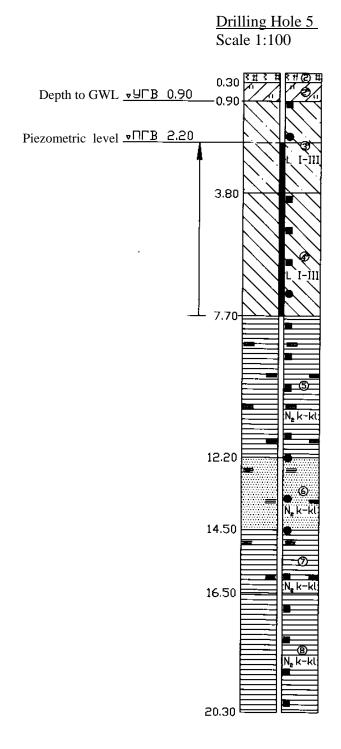
Brown loam with calcareous inclusions, hard to medium-hard

Greenish grey and greyish brown clay with inclusions of Fe-Mn compounds, big size inclusions of carbonates, ochreous wedges, hard

Light grey and greenish grey silica sand, fine, in some places pulverescent, with ochreous wedges

Greenish grey and grey clay with ochreous wedges, inclusions of Fe-Mn compounds, bands of pulverescent greenish grey silica sand, hard

> Prepared by: <u>//signed//</u> T.V. Lysa Checked by: <u>//signed//</u> V.T. Golovko


> > Д 80206-337

Sheet 4

Soil Characteristics	EGE-3	EGE-4	EGE-5	EGE-6	EGE-7	
Standard Values						
Natural moisture W, fractions	0.173	0.208	0.205		0.288	
Density γ , g/cm ³	1.84	1.97	2.06		1.94	
Dry density $\gamma_{\rm s}$, g/cm ³	1.57	1.63	1.71		1.51	
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69	2.69		2.70	
Porosity n, %	41.64	39.41	36.61		44.25	
Porosity factor e, fractions	0.714	0.650	0.581		0.809	
Degree of saturation S _r , fractions	0.649	0.860	0.951		0.994	
Moisture at full saturation W _{sat} , fractions	0.265	0.241	0.216		0.299	
Moisture at the liquid limit W _L , fractions	0.360	0.326	0.360		0.500	
Moisture at the plastic limit W _p , fractions	0.213	0.202	0.193		0.256	
Index of plasticity I _p , fractions	0.148	0.124	0.168		0.226	
Index of consistency I _L , fractions	<0	0.067	0.083		0.147	
Loose density, g/cm ³	-	-	-	1.29	-	
Packed density, g/cm ³	-	-	-	1.63	-	
Angle of repose, air-dry, degrees	-	-	-	37	-	
Angle of repose, under water, degrees	-	-	-	33	-	
Modulus of deformation E, MPa	20	23	30	11	23	
Angle of internal friction φ , degrees	24	24	22	30	20	
Specific cohesion, kPa	25.00	30.0	37.00	4.00	47.00	
Estimated Values o	f Bearing Capacity	y, Confidence Fac	tor α=0.9	•	•	
Density γ , g/cm ³	1.80	1.93	2.02	1.94	1.90	
Angle of internal friction φ , degrees	21	21	19	27	17	
Specific cohesion c, kPa	16.70	20	24.70	3.00	31.00	
Estimated Values of	Bearing Capacity	, Confidence Fact	or $\alpha = 0.85$			
Density γ , g/cm ³	1.84	1.97	2.06	1.98	1.94	
Angle of internal friction φ , degrees	24	24	22	30	20	
Specific cohesion c, kPa	25.00	30.0	37.00	4.00	47.00	

Engineering-Geological Passport, Site #4

At the structural embedment to a depth of 4 m hard high-density brown loams will serve the base for foundations or piling.

Date of drilling: September 2009

Soil-vegetable layer

Dark greyish brown loam, humus, saline, hard, with plant roots

Pale yellowish brown loess loam, saline, with calcareous inclusions, dorbeetle holes, humus wedges, in the top of the layer – low plasticity, below – high plasticity

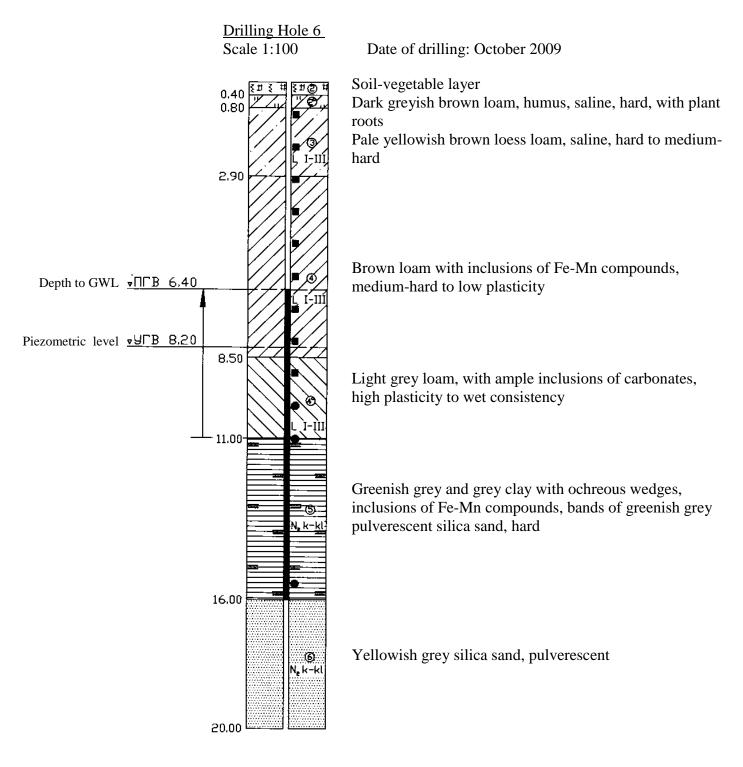
Brown loess loam with calcareous inclusions, in the top – medium-hard, below – low plasticity to high plasticity

Greenish grey and grey clay with ochreous wedges, oolitic inclusions of carbonates, Fe-Mn compounds, bands of greenish grey pulverescent, in some places fine, silica sand, medium-hard to high plasticity

Light grey and greenish grey silica sand, fine, in some places pulverescent, with bands of carbonates, Fe-Mn compounds, ochreous wedges and bands of greenish grey clay

Greenish grey and grey clay with ochreous wedges, oolitic inclusions of carbonates, Fe-Mn compounds, bands of pulverescent greenish grey silica sand, mediumhard

Dark grey silty clay, medium-hard

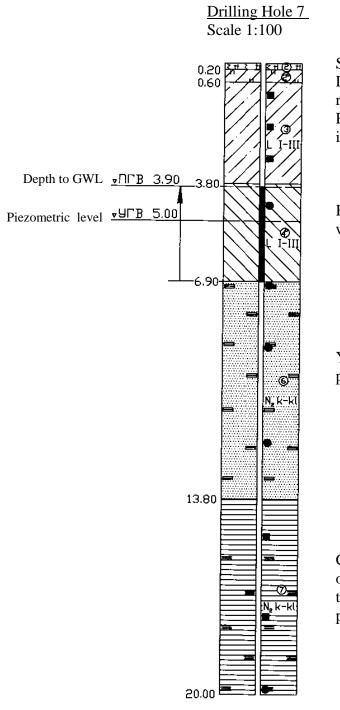

Prepared by:	//signed//	T.V. Lysa
Checked by:	//signed// V.	T. Golovko

П 80206 227	Sheet
Д 80206-337	5

Engineering-Geological Passport, Site #5

Soil Characteristics	EGE-3 ^a	EGE-4 ^a	EGE-5	EGE-6	EGE-7	EGE-8
	Standa	ard Values				
Natural moisture W, fractions	0.267	0.193	0.203		0.293	0.352
Density γ , g/cm ³	1.94	2.04	2.10		1.97	1.88
Dry density $\gamma_{\rm s}$, g/cm ³	1.57	1.71	1.75		1.52	1.40
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69	2.68		2.71	2.69
Porosity n, %	41.64	36.23	34.86		43.91	48.24
Porosity factor e, fractions	0.713	0.591	0.550		0.793	0.942
Degree of saturation S _r , fractions	0.894	0.880	0.990		1.001	1.013
Moisture at full saturation W _{sat} , fractions	0.265	0.220	0.204		0.293	0.296
Moisture at the liquid limit W _L , fractions	0.344	0.259	0.286		0.470	0.555
Moisture at the plastic limit W _p , fractions	0.192	0.154	0.160		0.255	0.309
Index of plasticity I _p , fractions	0.152	0.106	0.125		0.215	0.246
Index of consistency I _L , fractions	0.490	0.393	0.342		0.176	0.179
Loose density, g/cm ³	-	-	-	1.18	-	-
Packed density, g/cm ³	-	-	-	1.57	-	-
Angle of repose, air-dry, degrees	-	-	-	43	-	-
Angle of repose, under water, degrees	-	-	-	34	-	-
Modulus of deformation E, MPa	16	16	30	11	21	8.04
Angle of internal friction φ , degrees	23	23	20	30	20	15
Specific cohesion, kPa	26.70	28.30	36.70	4.0	47.00	47.00
Estimated V	alues of Bearing C	Capacity, Confider	nce Factor α=0.9			
Density γ , g/cm ³	1.91	2.00	2.06	1.94	1.93	1.86
Angle of internal friction φ , degrees	20	20	17	27	17	13
Specific cohesion c, kPa	17.80	18.87	24.47	3.0	31.00	31.00
Estimated Va	alues of Bearing C	apacity, Confiden	ce Factor a=0.8	5		
Density γ , g/cm ³	1.94	2.04	2.10	1.98	1.97	1.89
Angle of internal friction φ , degrees	23	23	20	30	20	15
Specific cohesion c, kPa	26.70	28.30	36.70	4.0	47.00	47.00

At the structural embedment to a depth of 4 m the bottom of the foundation pit comes upon high plasticity brown loam. We believe it is necessary to deepen the pit down to 4.5 m and replace the high plasticity soil with crushed stone (which will serve the base for foundation or caps of pile field).


Prepared by:	//signed//	T.V. Lysa
Checked by:	//signed// V.	T. Golovko

Д **80206-337** Sheet 6

Soil Characteristics	EGE-3 ^a	EGE-4	EGE-4 ^a	EGE-5	EGE-6	
	Standard Values					
Natural moisture W, fractions	0.164	0.218	0.228	0.219		
Density γ , g/cm ³	1.94	1.99	2.00	2.10		
Dry density γ_{s} , g/cm ³	1.67	1.64	1.62	1.75		
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69	2.69	2.68		
Porosity n, %	38.11	39.10	39.78	34.86		
Porosity factor e, fractions	0.618	0.643	0.660	0.550		
Degree of saturation S _r , fractions	0.714	0.913	0.962	0.990		
Moisture at full saturation W _{sat} , fractions	0.229	0.241	0.245	0.204		
Moisture at the liquid limit W _L , fractions	0.364	0.337	0.289	0.285		
Moisture at the plastic limit W _p , fractions	0.217	0.207	0.175	0.167		
Index of plasticity I _p , fractions	0.293	0.130	0.114	0.118		
Index of consistency I_L , fractions	<0	0.084	0.535	0.441		
Loose density, g/cm ³	-	-	-	-	1.29	
Packed density, g/cm ³	-	-	-	-	1.63	
Angle of repose, air-dry, degrees	-	-	-	-	37	
Angle of repose, under water, degrees	-	-	-	-	33	
Modulus of deformation E, MPa	16	19	12	30	11	
Angle of internal friction φ , degrees	23	23	23	20	30	
Specific cohesion, kPa	26.00	31.70	23.30	37.00	4.00	
Estimated Values o	f Bearing Capacity	y, Confidence Fac	tor α=0.9			
Density γ , g/cm ³	1.91	1.95	1.96	2.06	1.94	
Angle of internal friction φ , degrees	20	20	20	17	27	
Specific cohesion c, kPa	17.30	21.13	15.53	25.00	3.00	
Estimated Values of	Bearing Capacity	, Confidence Fact	or $\alpha = 0.85$			
Density γ , g/cm ³	1.94	1.99	2.00	2.10	1.98	
Angle of internal friction φ , degrees	23	23	23	20	30	
Specific cohesion c, kPa	26.00	31.70	23.30	37.00	4.00	

Engineering-Geological Passport, Site #6

At the structural embedment to a depth of 4 m high-density water-free brown loams will serve the base for foundations or piling.

Date of drilling: September 2009

Soil-vegetable layer

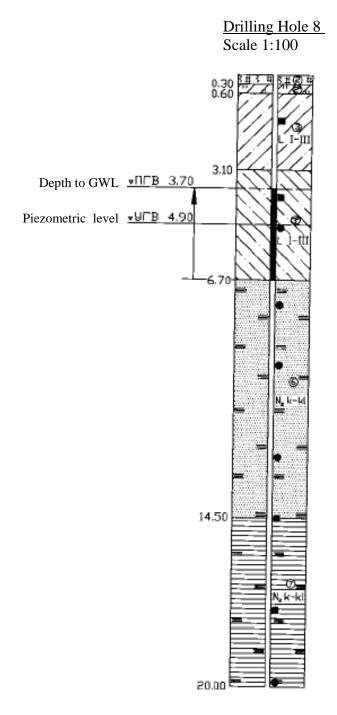
Dark greyish brown loam, humus, saline, hard, with plant roots

Pale yellowish brown loess loam, saline, with calcareous inclusions, dorbeetle holes, medium-hard to low plasticity

Brown loam with calcareous inclusions, high plasticity to wet consistency

Yellowish grey silica sand, fine, in some places pulverescent, with ample bands of greenish grey clay

Greenish grey and grey clay with ochreous wedges, oolitic inclusions of carbonates, Fe-Mn compounds, from the depth of 15.60 – with bands of greenish grey pulverescent, in some places fine, silica sand, hard


> Prepared by: <u>//signed//</u> T.V. Lysa Checked by: <u>//signed//</u> V.T. Golovko

П 90206 227	Sheet
Д 80206-337	7
Demonster A	4(0.105)

Soil Characteristics	EGE-3	EGE-4 ^a	EGE-6	EGE-7
Standard Values				
Natural moisture W, fractions	0.234	0.275	0.194	0.242
Density γ , g/cm ³	1.92	2.00		1.97
Dry density γ s, g/cm ³	1.55	1.62		1.64
Ground particle number density $\gamma_{\rm d}$, g/cm ³	2.69	2.69		2.70
Porosity n, %	42.25	39.78		39.32
Porosity factor e, fractions	0.736	0.660		0.651
Degree of saturation S _r , fractions	0.867	0.962		0.997
Moisture at full saturation W _{sat} , fractions	0.273	0.245		0.242
Moisture at the liquid limit W _L , fractions	0.331	0.318		0.456
Moisture at the plastic limit W _p , fractions	0.202	0.178		0.224
Index of plasticity I _p , fractions	0.130	0.140		0.232
Index of consistency I _L , fractions	0.255	0.693		0.080
Loose density, g/cm ³	-	-	1.29	-
Packed density, g/cm ³	-	-	1.63	-
Angle of repose, air-dry, degrees	-	-	37	-
Angle of repose, under water, degrees	-	-	33	-
Modulus of deformation E, MPa	14	12	11	22
Angle of internal friction φ , degrees	24	19	30	24
Specific cohesion, kPa	25.00	25.00	4.00	31.00
Estimated Values of Bearing Capacity, Confidence Factor α =0.9				
Density γ , g/cm ³	1.89	1.96	1.94	1.93
Angle of internal friction φ , degrees	21	17	27	21
Specific cohesion c, kPa	17.00	16.70	3.00	20.70
Estimated Values of Bearing Capacity, Confidence Factor α=0.85				
Density γ , g/cm ³	1.92	2.00	1.98	1.97
Angle of internal friction φ , degrees	24	19	30	24
Specific cohesion c, kPa	25.00	25.00	4.00	31.00

Engineering-Geological Passport, Site #7

At the structural embedment to a depth of 4 m the bottom of the foundation pit comes upon brown loam of high plasticity and wet consistency. Therefore, we believe it is necessary to deepen the pit by 0.5 m and replace the high plasticity soil with a bed of crushed granite or cast blast-furnace slag of stable structure (which will serve the base for foundation or caps of pile field).

Date of drilling: September 2009

Soil-vegetable layer

Dark greyish brown loam, humus, saline, hard, with plant roots

Pale yellowish brown loess loam, saline, with calcareous inclusions, medium-hard to low plasticity

Pale yellowish brown loess loam with calcareous inclusions, high plasticity to wet consistency

Yellowish grey silica sand, fine, in places pulverescent, with bands of greenish grey clay

Greenish grey and grey clay with ochreous wedges, oolitic inclusions of carbonates, Fe-Mn compounds, bands of greenish grey pulverescent silica sand, mediumhard to low plasticity

> Prepared by: <u>//signed//</u> T.V. Lysa Checked by: <u>//signed//</u> V.T. Golovko

П 90206 227	Sheet
Д 80206-337	8
Domon size A	4 (0 125)

Paper size A4 (0.125)

Soil Characteristics	EGE-3	EGE-3 ^a	EGE-6	EGE-7
Standa	rd Values			
Natural moisture W, fractions	0.224	0.282	0.221	0.319
Density γ , g/cm ³	1.87	1.98		1.82
Dry density γ_{s} , g/cm ³	1.53	1.56		1.33
Ground particle number density γ d, g/cm ³	2.69	2.69		2.67
Porosity n, %	43.12	42.01		50.38
Porosity factor e, fractions	0.758	0.724		1.016
Degree of saturation S _r , fractions	0.795	0.996		0.971
Moisture at full saturation W _{sat} , fractions	0.282	0.269		0.381
Moisture at the liquid limit W _L , fractions	0.327	0.287		0.469
Moisture at the plastic limit W _p , fractions	0.197	0.177		0.269
Index of plasticity I _p , fractions	0.130	0.111		0.199
Index of consistency I _L , fractions	0.208	0.938		0.276
Loose density, g/cm ³	-	-	1.29	-
Packed density, g/cm ³	-	-	1.63	-
Angle of repose, air-dry, degrees	-	-	37	-
Angle of repose, under water, degrees	-	-	33	-
Modulus of deformation E, MPa	17	10	11	20
Angle of internal friction φ , degrees	23	20	30	11
Specific cohesion, kPa	25.00	26.70	4.00	32.00
Estimated Values of Bearing C	apacity, Confid	dence Factor α=0.	9	
Density γ , g/cm ³	1.84	1.94	1.94	1.79
Angle of internal friction φ , degrees	20	17	27	10
Specific cohesion c, kPa	16.70	17.80	3.00	21.30
Estimated Values of Bearing Ca	apacity, Confid	ence Factor $\alpha = 0.8$	35	
Density γ , g/cm ³	1.87	1.98	1.98	1.82
Angle of internal friction φ , degrees	23	20	30	11
Specific cohesion c, kPa	25.00	26.70	4.00	32.00

Engineering-Geological Passport, Site #8

At the structural embedment to a depth of 4 m the bottom of the foundation pit comes upon pale yellowish brown loess loam of wet consistency. We believe it is necessary to make a bed of crushed stone (which will serve the base for foundation or caps of pile field).

LEGEND

⊸ УГВ 4.	90 Depth to groundwater level (GWL)
	Undisturbed sample point
•	Disturbed sample point
3	Number of Engineering-Geological Element – EGE
<u>▼ПГВ 3.</u>	70 Piezometric level

Prepared by: <u>//signed//</u> T.V. Lysa Checked by: <u>//signed//</u> V.T. Golovko

П 90206 227	Sheet
Д 80206-337	9

Paper size A4 (0.125)

III. GEOLOGICAL CROSS-SECTION AND STRUCTURE OF DRILLING HOLE # $1^{\rm r}$

		ge of n		Structure of d	rilling		kness o layer, n		Water	level, m	Ca	asing	
Scale	Layer No.	Geological age the stratum	Stratum description	hole specifying the depth of the casing shoe & the pipe section above screen		from the depth of	to the depth of	total thickness	first encountered at	steady	Diameter,	Depth, m	Notes
0	1		Soil-veget. layer	11/1	3/1/	0,0	6,0	60		1775 1880 1875 1878 1898 1899 1899 1899 1899 1899 1899	1		REPART COMMON
10	2		Red-brown clay	2~1	1	6,0		6.0			-		
	3	NOK	ine sand	····	1	12,0	15,0	30					
20		Nari C	Green clay,	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					127,0			
30	4	h	igh-density	~_	I	15,0	35,0	20,0		1-11-			ed
-	5	ARKMS	andstone	TT	A second to the second s		38,0						.een
40		Agrand	lays and grey										not screened
50	6		ands, fine and nequigranular			38.0	52.0	14.0					
	7	0	Carstone	E	T	520	56.0	40					ole i
60		16 Em	Dark green clay	~~	~~~								ng he
70	8			~	~	16,0	71,0	15,0					rillir
2	91	BLIM	Carstone	TI I	T	71.0	77.0	90	77,0		273	77,0	The drilling hole is
	101	40 S	imestone			77,0	85,0	8.0					Ĩ
30		S	h.r.w/sand bands	1	· 1 P	10.0	28.0	3.0					
					-								

The holehead absolute elevation – 12.0 m The drilling hole depth – 88.0 m

Checked for accuracy by:

Engineer-Hydrogeologist //signed// T.A. Vyshnyakova

//Stamp of State Geological Enterprise "Pivdenukrgeologia", State Committee of Ukraine for Geology and Subsoil Use//

Duration of a pumping test is 1 day. Duration of an extended pumping test is 6 days.

IV. RESULTS Of the Extended Pumping Test Performed for the Drilling Hole # <u>22</u> (# 1)

		m		r	e,	Air	on	u		
	, m	el, 1	, m	1 ³ /h	ıarg	Eductor	Pipes	Air l	Pipes	ptio
Date	Static Level,	Dynamic Level,	Drawdown, m	Flow Rate, m ³ /hr	Specific Discharge, m ³ /hr	Pipe Diameter, mm	Setting Depth, m	Pipe Diameter, mm	Setting Depth, m	Pump Description
25 Feb	27.0	37.0	10.0	40.0	4.0					
1978						127	65	73	60	ETsV 8-16-
27 Feb 1978	27.0	37.0	10.0	40.0	4.0					140 [ЭЦВ 8-16-140]
28 Feb 1978	27.0	37.0	10.0	40.0	4.0					
1 Mar 1978	27.0	37.0	10.0	40.0	4.0					
2 Mar 1978	27.0	37.0	10.0	40.0	4.0					
3 Mar 1978	27.0	37.0	10.0	40.0	4.0					

Pumping was carried out by:

Driller <u>//signed//</u> P.I. Pronyk Date: <u>3 March 1978</u>

Checked for accuracy by:

Engineer-Hydrogeologist //signed// T.A. Vyshnyakova

//Stamp of State Geological Enterprise "Pivdenukrgeologia", State Committee of Ukraine for Geology and Subsoil Use//

Copy

ARTESIAN WELL # <u>20 бис</u> (1)

- I. 1. Location: Oleksandrivka Village, Pryazovske Rayon, Zaporizhzhia Oblast, Ukraine
 - 2. Assigned to: "Zavety Ilyicha" Collective Farm in Pryazovske Rayon of Zaporizhzhia Oblast
 - 3. Artesian well application (potable water supply / service water supply / irrigation): <u>service</u> <u>and potable water supply.</u>
 - 4. The well drilling was carried out according to the design of Zaporozhgiprovodkhoz.
- II. 1. The production well was drilled by <u>SPMK [Specialized Mobile Mechanical Unit] 9 of</u> <u>"MVS" Trust.</u>
 - 2. Depth of the well is <u>88.0 m.</u>
 - 3. The work on the well started with drilling on <u>1 July 1963</u> and was completed with drilling on <u>8 July 1963</u>.

The drilling was carried out by a mechanical rotary method with $\Psi PE - 3$ AM drilling rig by a driller <u>A. Okorochkov</u>.

Diameters of the drilled well: Dia = 346 mm at a depth of 0.0 to 77.0 m. Dia = 243 mm at a depth of 77.0 to 88.0 m.

- 4. At a depth of $\underline{0.0}$ to $\underline{77.0}$ m the well is protected with casing pipes, $\underline{273}$ mm in diameter.
- 5. At a depth of <u>77.0</u> to <u>88.0</u> m the well is <u>243</u> mm in diameter and is not protected with casing.
- 6. The well is <u>not screened</u>.

The bottom part of the sump is plugged with a metal plug.

The screened section is at a depth of $\underline{77.0 - 88.0}$ m.

III. GEOLOGICAL CROSS-SECTION AND STRUCTURE OF DRILLING HOLE # 4^r

	Io.	age of um		drilling hole		kness o ayer, n			level, m	Ca	sing	
Scale	Scale Ceological age the stratum description		depth of the casing shoe & the pipe section above screen	from the depth of	to the depth	total thickness	fürst encountered at	steady	Diameter,	Depth, m	Notes	
D	1	9	Soil-veget. layer Loam	211 21	90	6,0	A Contract of Contract					
10	23		Red-brown clay Fine sand		6,0	10,0	4.0		a.			
		1	Green clay,	~~								
20		Narj	high-density	~_ ~_					27,0			ned
30	4					32.0						cree
	2		Sandstone Interlayers of grey		32.0	34.0	20					ot s
- 40	-6-		clays & sands,fine & inequigranular	~~	34,0	49.0	150					e is r
50	7	-1-	Carstone	E E	49,0	52,0	30					hole
60		Ng KM	Dark green									ling
	8		clay		52,0	69,0	17,0					drill
<i>40</i>	9	MERM	Carstone	FI FI	69,0	77.0	8,0	770		273	77,0	The drilling hole is not screened
		10	Limestone			85,0		77,0				-
			Shell rock									
20												

The holehead absolute elevation – 12.0 m The drilling hole depth – 85.0 m

Checked for accuracy by:

Engineer-Hydrogeologist //signed// T.A. Vyshnyakova

//Stamp of State Geological Enterprise "Pivdenuk
rgeologia", State Committee of Ukraine for Geology and Subsoil Use//

Duration of a pumping test is 1 day. Duration of an extended pumping test is 6 days.

IV. RESULTS Of the Extended Pumping Test Performed for the Drilling Hole # <u>4</u>

		m		u	e,	Air	on	u		
	, m	el, 1	ш	1 ^{3/h}	larg	Eductor	Pipes	Air l	Pipes	ptio
Date	Static Level,	Dynamic Level,	Drawdown, m	Flow Rate, m ³ /hr	Specific Discharge, m ³ /hr	Pipe Diameter, mm	Setting Depth, m	Pipe Diameter, mm	Setting Depth, m	Pump Description
25 Feb	27.0	37.0	10.0	40.0	4.0					
1978						127	64	73	59	ETsV 8-2G-
27 Feb 1978	27.0	37.0	10.0	40.0	4.0					100 [ЭЦВ 8-2Г-100]
28 Feb 1978	27.0	37.0	10.0	40.0	4.0					
1 Mar 1978	27.0	37.0	10.0	40.0	4.0					
2 Mar 1978	27.0	37.0	10.0	40.0	4.0					
3 Mar 1978	27.0	37.0	10.0	40.0	4.0					

Pumping was carried out by:

Driller

Checked for accuracy by:

Engineer-Hydrogeologist <u>//signed//</u> T.A. Vyshnyakova

//Stamp of State Geological Enterprise "Pivdenukrgeologia", State Committee of Ukraine for Geology and Subsoil Use//

Copy

ARTESIAN WELL # <u>15</u> (# 4)

- I. 1. Location: Oleksandrivka Village, Pryazovske Rayon, Zaporizhzhia Oblast, Ukraine
 - 2. Assigned to: <u>"Zavety Ilyicha" Collective Farm</u>
 - 3. Artesian well application (potable water supply / service water supply / irrigation): <u>service</u> <u>and potable water supply.</u>
 - 4. The well drilling was carried out according to the design of Zaporozhgiprovodkhoz.
- II. 1. The production well was drilled by <u>SPMK [Specialized Mobile Mechanical Unit] 9 of</u> <u>"MVS" Trust.</u>
 - 2. Depth of the well is <u>85.0 m.</u>
 - 3. The work on the well started with drilling on <u>1 February 1960</u> and was completed with drilling on <u>1 March 1960</u>.

The drilling was carried out by a mechanical rotary method with VPE - 3 AM drilling rig.

Diameters of the drilled well: Dia = $\underline{346}$ mm at a depth of $\underline{0.0}$ to $\underline{77.0}$ m. Dia = $\underline{243}$ mm at a depth of $\underline{77.0}$ to $\underline{85.0}$ m.

- 4. At a depth of $\underline{0.0}$ to $\underline{77.0}$ m the well is protected with casing pipes, $\underline{273}$ mm in diameter.
- 5. At a depth of $\underline{77.0}$ to $\underline{85.0}$ m the well is $\underline{243}$ mm in diameter and is not protected with casing.
- 6. The well is <u>not screened</u>.

The bottom part of the sump is plugged with a metal plug.

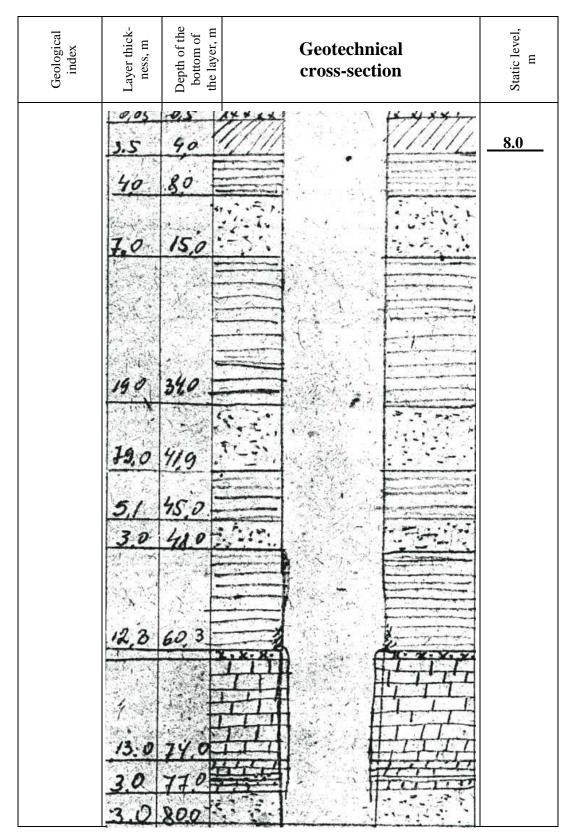
The screened section is at a depth of 85.0 - 95.0 m.

Geotechnical Data on the Constructed Water Well # 828

The exploration well was drilled by <u>Melitopol SPMK [Specialized Mobile Mechanical Unit] – 9</u> of Zaporozhvodstroy Trust on the territory of <u>Dunayivka Village of Pryazovske Rayon</u>. Total depth of the well is <u>80.0</u> m.

The drilling was carried out by a rotary method with YPE - 3 AM drilling rig.

Drilling starting date: <u>13 May 1969</u>


Drilling completion date: <u>27 May 1969.</u>

The inspection document for the water well was signed on 27 May 1969.

The following strata were encountered in the process of drilling the water well # <u>828</u>:

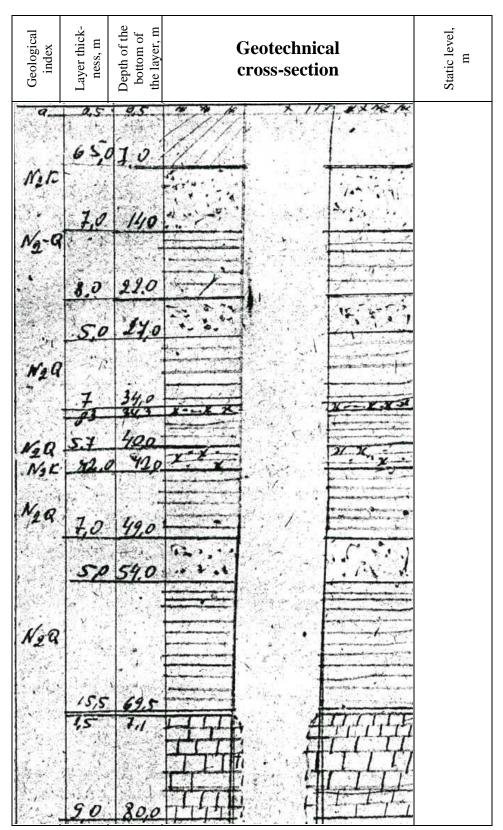
Item No.	Geological age of encountered stratum	Description of encountered stratum	Layer thickness, m	Depth of the bottom of the layer, m
1	Qiv	Soil-vegetable layer	0.5	0.5
2	Q	Yellow-brown loam	3.5	4.0
3	eN_2^3	Red-brown clay	4.0	8.0
4	N ₂ kj	Yellow sand, fine	7.0	15.0
5	N ₂ kj	Light grey clay	19.0	34.0
6	N ₂ kj	Grey sand, fine	79.0	41.9
7	N ₂ kt	Carstone	5.1	45.0
8	N ₂ kt	Grey sand, fine	3.0	48.0
9	N_1S	Black clay	12.3	60.3
10	N_1S	Carstone	0.7	61.0
11	N_1S	Stratified grey limestone	13.0	74.0
12	N_1S	Grey limestone with bands of grey fine sand	3.0	77.0
13	N_1S	Inequigranular sand with fauna and bands of limestone	3.0	80.0

Scale 1:400 H = 80 m

Geotechnical Data on the Constructed Water Well # 827

The exploration well was drilled by <u>Melitopol SPMK [Specialized Mobile Mechanical Unit]</u> – <u>119 of Zaporozhvodstroy Trust</u> on the territory of <u>Victorivka Village of Pryazovske Rayon</u>. Total depth of the well is <u>80.0</u> m.

The drilling was carried out by a rotary method with VPE - 3 KM drilling rig.


Drilling starting date: 7 May 1969

Drilling completion date: <u>16 May 1969.</u>

The inspection document for the water well was signed on 16 May 1969.

The following strata were encountered in the process of drilling the water well:

Item No.	Geological age of encountered stratum	Description of encountered stratum	Layer thickness, m	Depth of the bottom of the layer, m
1	QIV	Soil-vegetable layer	0.05	0.05
2	Q1-3	Yellow-brown loam	6.5	7.0
3	eN_2^3	Yellow sand, fine	7.0	14.0
4	N ₂ kj	Light yellow clay	8.0	22.0
5	N ₂ kj	Yellow sand, fine	5.0	27.0
6	N ₂ kj	Light grey clay	7.0	34.0
7	N ₂ kj	Grey sandstone	0.3	34.3
8	N2kj	Grey clay	5.7	40.0
9	N ₂ kt	Carstone	2.0	42.0
10	N ₂ kt	Grey clay	7.0	49.0
11	N ₂ kt	Grey sand, very fine-grained	5.0	54.0
12	N_1S	Black clay	15.5	69.5
13	N_1S	Carstone	1.5	71.0
14	N_1S	Grey limestone with bands of clay	9.0	80.0

H = 80 m

III. GEOLOGICAL CROSS-SECTION AND STRUCTURE OF DRILLING HOLE # 14 (Dunayivka Village)

The holehead absolute elevation – 9.0 m The drilling hole depth – 75.0 m

		e of 1	Stratum description		ructur 1ling			ckness layer, 1		Water le	evel, m	Cas	sing	
Scale	Layer No.	Geological age of the stratum	_Soil-veget. layer	spe de casin pipe s	cifyin pth of g shoe	g the f the e & the n above	from the	to the depth	total thickness	first encountered at	steady	Diameter, mm	Depth, m	Notes
	aliv		Loam	Î			9.5	4.9	3.5	55,0	80.0	219	64.5	
5			40 ° 4											
10	-4 -		Clay				4.0	10	6.0					
	-11-		Sand				10	12	2.0		3			
15														
20														
	My		Green					1						
25			clay					1						
30					17		12.0	30	18.0					
	-11-		Sand	in in		()(32	2					
35	Naru		Snuff-coloured	C. Y	2	$\frac{Y \cdot X}{Y \cdot Y}$		1						
40	00.00		sandstone	$\frac{1}{1}$		$\frac{x}{y}$	92	40	8					
	×(+-		Sand		3		40	43	3					
45				TX		·Y. 7.					<u> </u>			
50	-11.		Sandstone	JY		·Y. X.								
55				$\left(\begin{array}{c} \cdot \\ \cdot $		XX					-			
		2000		<u>(·)</u>		<u>()(· · · · · · · · · · · · · · · · · ·</u>	43	56	12			i		
60	-11-		Clay											
65							\$5	64,5	9.5					
													····	
70	1.5		Limestone									•		
75						$\frac{1}{1}$	64.5	15.0	10.5				•	

Date: <u>28 March 1954</u> Engineer-Hydrogeologist

GEOLOGICAL CROSS-SECTION AND STRUCTURE OF DRILLING HOLE # 733 (Dunayivka Village)

The drilling hole depth -85.0 m

Geological index	Layer thick- ness, m	Depth of the bottom of the layer, m	Geotechnical cross-section	Static level, m
Q	7.5	8.0	Soil-vegetable layer Light yellow clay w/ bands of red-brown clay	
11.0	12.0 6.0		Agrillaceous sand, light grey to white, <u>fine</u> Light green clay	
Nzĸl	8.0 8.0	34.0	Grey clay, high-density Grey sand, medium- grained	2 1 2 1
Nzĸ	6.0 6.0 12.0	48.0 54.0	Carstone Grey argillaceous sand, medium-grained Black clay	
Nis	13.7	68.3 82.0	Grey limestone Grey limestone, fissured Grey sand, medium- grained	

Scale 1:1,000

Item No.	Lab. No. of san	nple	Pit No.	Sampling depth, m	Т	ype of sample			
1	16		1	5.00		Groundwater			
Cation	S		mg/l	mg-	mg-eq./l % eq.				
Ca			76.95	3.	34	8.41			
Mg		,	75.88	6.		13.67			
K + Na	l	8	17.72	35.	55	77.91			
Anions	5		mg/l	mg-	eq./l	% eq.			
SO_4		4	04.30	8.4	42	18.46			
Cl		1,	035.50	29.	21	64.01			
HCO ₃		4	88.00	8.	00	17.53			
CO ₃			0.00	0.	00	0.00			
Total i	ons			91	27				
Total h	Total hardness, mg-eq./l 10.08								
Carbor	ate hardness, mg	-eq./l				8.00			
Non-ca	rbonate hardness	s, mg-eq./l				2.08			
Total h	ardness, German	degrees				28.26			
Carbor	ate hardness, Ge	rman degr	ees			22.43			
	sidue, mg/l					2,702.00			
Fe, mg	/1					2.00			
	Physical p	properties			Gas co	ontent			
Transp	arency level		urbid	Oxidability		0.00			
Color	2	ve	lowish	Free CO ₂	0 -	0.00			
Smell		~	smell	Aggressive	CO ₂	0.00			
Taste									
	rature, °C		21.0	pН		7.3			
Salt co	ntent formula		M2.90 (0	CL 64 SO4 18 H	CO3 18 / K+	-NA 78)			
	Water description by salt content (S.A. Schukarev Classification)sodium chloride								
Total h	ardness, English	degrees				35			
	ardness, French					50			
	ardness, America					504			

Water Chemical Analysis Data Record

Analysis conducted by:

//signed//

Water Aggressiveness Test Data Record

Item No.	Lab No. of sample	Pit No.		Sampl	ing depth, m	Type of s	ample		
1	16	1			5.00	Ground	water		
		Degree of aggressiveness							
Aggress	siveness parameter		Grade of	concrete	0 00	to concrete	1		
			W	6	W8	reinforcement	to metal structures		
Bicarbonate a (HCO3)	lkalinity, mg-eq./l	Non-aggressive	Non-aggressive		Non-aggressive	2			
pH value		Non-aggressive	Non-agg	ressive	Non-aggressive	2			
1	rbonic acid content,								
Magnesium sa Mg equivalen	alts content, mg/l (in t)	Non-aggressive	Non-agg	gressive	Non-aggressive				
NH4 equivale									
Caustic alkalis and Na ions e	s content, mg/l (in K quivalent)	Non-aggressive	sive Non-aggress		Non-aggressive				
	of chlorides, sulphates, ther salts, mg/l	Non-aggressive	Non-aggressiv		Non-aggressive				
Sulphates con Portland ce		Non-aggressive	Non-agg	gressive	Non-aggressive				
Slag portla		Non-aggressive	Non-agg	/	Non-aggressive				
1	esistant cements	Non-aggressive	Non-agg	gressive	Non-aggressive	2			
-	tent, mg/l anent immersion lical wetting					Non-aggressive Medium-aggressive	-		
sulphates, g/l	of chlorides and						Medium-aggressive		
	reness of soil below carbon steel						Mildly aggressive		

Item No.	Lab. No. of san	nple Pit No.		Sampling depth, m	Т	ype of sample				
2	17	1		7.90		Groundwater				
Cation	S	mg/l		mg-e	q./l	% eq.				
Ca		442.48		22.0)8	11.90				
Mg		998.09		82.0)8	44.23				
K + Na	a	1,872.68		81.4	42	43.87				
Anions	S	mg/l		mg-e	q./l	% eq.				
SO_4		3,516.27		73.2	26	39.47				
Cl		3,790.50		106.	93	57.62				
HCO ₃		329.40		5.40		2.91				
CO ₃		0.00		0.00		0.00				
Total i	ons			371.	16					
Total h	hardness, mg-eq./	l				104.16				
Carbo	nate hardness, mg	-eq./l			5.40					
Non-ca	arbonate hardness	s, mg-eq./l				98.76				
Total l	nardness, German	degrees				292.06				
Carbo	nate hardness, Ge	rman degrees				15.14				
Dry re	sidue, mg/l					10,894.00				
Fe, mg	g/l					0.10				
	Physical properties				Gas co	ontent				
Transp	arency level	turbid		Oxidability	Oxidability mg O ₂ /l 0.00					
Color	-	yellowish		Free CO ₂				Free CO ₂		0.00
Smell		no smell		Aggressive	CO ₂	0.00				
The second secon										

	SILCII	Agglessive CO2	0.00	
2	1.0	pH	7.4	
	M10.95 (CI	2 58 SO4 39 / MG 44	K+NA 44)	
Water description by salt content (S.A. Schukarev Classification)		chloride-sulphate-magnesium-sodium		
degrees			366	
degrees			521	
an degrees			5,213	
	2 It content ication) degrees legrees	21.0 M10.95 (CI t content ication) chloride-sul degrees legrees	M10.95 (CL 58 SO4 39 / MG 44 chloride-sulphate-magnesium-sod degrees legrees	

//signed//

Item No.	Lab No. of sample	Pit No. Sampling depth, m			g depth, m		Type of sa	mple
2	17	1		7	.90		Groundw	ater
Aggress	siveness parameter		Grade of conci		Degree of aggre		to concrete	
	1	W4	W6		W8		reinforcement	to metal structures
Bicarbonate a (HCO3)	lkalinity, mg-eq./l	Non-aggressive	Non-aggress	ive	Non-aggressive			
pH value		Non-aggressive	Non-aggress	ive	Non-aggressi	ive		
Aggressive ca mg/l (CO2)	arbonic acid content,							
Magnesium sa Mg equivalen	alts content, mg/l (in t)	Non-aggressive	Non-aggress	ive	Non-aggressi	ive		
NH4 equivale								
Caustic alkali and Na ions e	s content, mg/l (in K quivalent)	Non-aggressive	Non-aggress	ive	Non-aggressive			
	of chlorides, sulphates, ther salts, mg/l	Mildly aggressive	Non-aggress	ive	Non-aggressive			
Sulphates con	itent, mg/l	Strongly	Strongly		Strongly			
Portland ce	ement	aggressive	aggressive	e	aggressive	;		
01	and cement	Mildly aggressive	Non-aggress	ive	Non-aggressi	ive		
Sulphate-re	esistant cements	Non-aggressive	Non-aggress	ive	Non-aggressi	ive		
Chlorides con								
1	anent immersion						Non-aggressive	
1	dical wetting						Medium-aggressive	
	of chlorides and							
sulphates, g/l								
- fresh natu								Strongly aggressive
	veness of soil below carbon steel							Medium-aggressive

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	J	Type of sample
3	10		2		3.20		Groundwater
Cation	S		mg/l		mg-e	eq./l	% eq.
Ca			1,385.16		69.	12	16.07
Mg			1,324.96		108.	.96	25.33
K + Na	ı		5,799.46		252.	.15	58.61
Anions	5		mg/l		mg-e	eq./l	% eq.
SO_4			1,195.00		24.9	90	5.79
Cl			14,202.50		400.	.63	93.12
HCO ₃			286.70		4.7	0	1.09
CO ₃			0.00		0.0	0.00	
Total i	ons				860.	.46	
Total h	ardness, mg-eq./	1					178.08
Carbon	nate hardness, mg	g-eq./l					4.70
	arbonate hardness		*		173.38		
Total h	ardness, German	degre	es				499.34
Carbor	nate hardness, Ge	rman c	legrees				13.18
-	sidue, mg/l						24,156.00
Fe, mg	/1						0.25
	Physical p	oropert	ies			Gas c	ontent
Transp	parency level turbid Oxidability mg O ₂ /l		mg O ₂ /l	0.00			
Color	*		yellowish		Free CO ₂		0.00
Smell			•	Aggressive CO ₂		CO ₂	0.00
Taste	Taste						
Tempe	rature, °C		21.0		рН		6.8

Salt content formulaM24.19 (CL 93 / K+NA 59 MG 25 CA16)Water description by salt content
(S.A. Schukarev Classification)chloride-sodium-magnesiumTotal hardness, English degrees625Total hardness, French degrees891

Total hardness, French degrees891Total hardness, American degrees8,912

Analysis conducted by:

//signed//

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
3	10	2	3.20	Groundwater

			Degree of aggressi	veness	
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures
	W4	W6	W8	reinforcement	to metal structures
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive		
pH value	Non-aggressive	Non-aggressive	Non-aggressive		
Aggressive carbonic acid content, mg/l (CO2)					
Magnesium salts content, mg/l (in Mg equivalent)	Mildly aggressive	Non-aggressive	Non-aggressive		
Ammonium salts content, mg/l (in NH4 equivalent)					
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Medium- aggressive	Mildly aggressive	Non-aggressive		
Sulphates content, mg/l Portland cement	Medium- aggressive	Mildly aggressive	Mildly aggressive		
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive		
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Mildly aggressive Strongly aggressive	
Total content of chlorides and					
sulphates, g/l					
- fresh natural waters					Strongly aggressive
- aggressiveness of soil below					
GWL to carbon steel					Medium-aggressive

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Г	Type of sample		
4	9		2		3.70		Groundwater		
Cation	S		mg/l		mg-e	eq./l	% eq.		
Ca			788.77		39.	36	11.03		
Mg			1,354.14		111.	.36	31.20		
K + Na	a		4,741.89		206	.17	57.77		
Anions	8		mg/l		mg-e	eq./l	% eq.		
SO ₄			2,562.62		53.	39	14.96		
Cl			10,592.50		298.80		83.72		
HCO ₃			286.70		4.70		1.32		
CO ₃			0.00		0.00		0.00		
Total i	ons				713.	.78			
Total h	hardness, mg-eq./	l					150.72		
Carbor	nate hardness, mg	-eq./1					4.70		
Non-ca	arbonate hardness	, mg-e	eq./1				146.02		
Total h	ardness, German	degre	es				422.62		
Carbonate hardness, German degrees							13.18		
						20,204.00			
Fe, mg/l 0.25						,			

Physical	properties		Gas co	ontent	
Transparency level			Oxidability mg O ₂ /l	0.00	
Color			Free CO ₂	0.00	
Smell			Aggressive CO ₂	0.00	
Taste					
Temperature, °C	2	1.0	pН	7.0	
Salt content formula Water description by sa			M20.33 (CL 84 SO4 15 / K+NA 58 MG 31) chloride-sodium-magnesium		
(S.A. Schukarev Classif	,			529	
Total hardness, English degreesTotal hardness, French degrees					
Total hardness, America	0			7,543	

//signed//

T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
4	9	2	3.70	Groundwater

			Degree of aggressi	veness	
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures
	W4	W6	W8	reinforcement	to metal structures
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive		
pH value	Non-aggressive	Non-aggressive	Non-aggressive		
Aggressive carbonic acid content, mg/l (CO2)					
Magnesium salts content, mg/l (in Mg equivalent)	Mildly aggressive	Non-aggressive	Non-aggressive		
Ammonium salts content, mg/l (in NH4 equivalent)					
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Medium- aggressive	Mildly aggressive	Non-aggressive		
Sulphates content, mg/l Portland cement	Strongly aggressive	Strongly aggressive	Strongly aggressive		
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive		
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Mildly aggressive Strongly aggressive	
Total content of chlorides and					
sulphates, g/l					
- fresh natural waters					Strongly aggressive
- aggressiveness of soil below					
GWL to carbon steel					Medium-aggressive

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	ype of sample	
5	12		3		3.00		Groundwater	
Cation	S		mg/l		mg-e	eq./l	% eq.	
Ca			105.81		5.2	28	12.93	
Mg			96.31		7.9	02	19.39	
K + Na			635.75		27.	64	67.68	
Anions	8		mg/l		mg-e	eq./l % eq.		
SO_4			519.31		10.	82	26.49	
Cl			883.50		24.	92	61.02	
HCO ₃			311.10		5.1	0	12.49	
CO ₃			0.00		0.00		0.00	
Total i	ons				81.	68		
Total h	hardness, mg-eq./	1					13.20	
Carbor	nate hardness, mg	g-eq./l					5.10	
Non-ca	arbonate hardness	s, mg-e	eq./l				8.10	
Total h	nardness, German	degre	es				37.01	
Carbon	nate hardness, Ge	rman (degrees				14.30	
Dry residue, mg/l							2,466.00	
Fe, mg	g/l				1.00			
Physical properties Gas content							ontent	

Physical properties			Gas co	ontent
Transparency level	turbid		Oxidability mg O ₂ /l	0.00
Color	yell	owish	Free CO ₂	0.00
Smell	nos	smell	Aggressive CO ₂	0.00
Taste				
Temperature, °C	21.0		pН	7.8
Salt content formula Water description by sa (S.A. Schukarev Classif		, , , , , , , , , , , , , , , , , , ,	61 SO4 26 HCO3 12 / K- phate-sodium	+NA 68 MG 19)
Total hardness, English	degrees			46
Total hardness, French	degrees			66
Total hardness, America	an degrees			661

//signed//

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
5	12	3	3.00	Groundwater

		Degree of aggressiveness						
Aggressiveness parameter		Grade of concrete	to concrete	to metal structures				
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Mildly aggressive	Non-aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive				
Total content of chlorides and				inculum aggressive				
sulphates, g/l								
- fresh natural waters					Medium-aggressive			
- aggressiveness of soil below GWL to carbon steel					Mildly aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	Type of sample	
6	11		3		7.30		Groundwater	
Cation	S		mg/l		mg-e	eq./l	% eq.	
Ca			298.20		14.	88	17.13	
Mg			283.08		23.2	28	26.80	
K + Na	a		1,119.93		48.0	69	56.06	
Anions	8		mg/l		mg-e	eq./1	% eq.	
SO_4			1,470.70		30.	64	35.28	
Cl			1,776.50		50.	11	57.70	
HCO ₃			372.10		6.1	0	7.02	
CO ₃			0.00		0.0	00	0.00	
Total i	ons				173.	.70		
Total h	hardness, mg-eq./	1					38.16	
Carbor	nate hardness, mg	g-eq./l					6.10	
Non-ca	arbonate hardness	s, mg-e	eq./l				32.06	
Total h	ardness, German	degre	es				107.00	
Carbon	nate hardness, Ge	rman (degrees				17.10	
Dry residue, mg/l							5,236.00	
Fe, mg/l 0.50						0.50		
	Physical properties Gas content							

Physical J	properties		Gas co	ontent
Transparency level	turbid		Oxidability mg O ₂ /l	0.00
Color	yelle	owish	Free CO ₂	0.00
Smell	nos	smell	Aggressive CO ₂	0.00
Taste				
Temperature, °C	21.0		pН	7.5
Salt content formula Water description by sa (S.A. Schukarev Classif			58 SO4 35 / K+NA 56 M phate-sodium-magnesiun	,
Total hardness, English	degrees			134
Total hardness, French	degrees			191
Total hardness, America	an degrees			1,910

//signed//

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
6	11	3	7.30	Groundwater

		Degree of aggressiveness						
Aggressiveness parameter		Grade of concrete	to concrete	to metal structures				
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Medium- aggressive	Mildly aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive				
Total content of chlorides and								
sulphates, g/l								
- fresh natural waters					Medium-aggressive			
- aggressiveness of soil below								
GWL to carbon steel					Mildly aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	Type of sample
7	24		4		6.00		Groundwater
Cation	S		mg/l		mg-e	eq./l	% eq.
Ca			115.43		5.7	6	8.62
Mg			151.76		12.4	48	18.68
K + Na	a		1,117.20		48.:	57	72.70
Anions	8		mg/l		mg-e	eq./l	% eq.
SO ₄			1,139.86		23.	75	35.54
Cl			1,257.30		35.4	47	53.08
HCO ₃			463.60		7.6	50	11.37
CO ₃			0.00		0.00		0.00
Total i	ons				133.	.63	
Total h	hardness, mg-eq./	1					18.24
Carbon	nate hardness, mg	g-eq./l					7.60
Non-ca	arbonate hardness	s, mg-e	eq./l				10.64
Total h	hardness, German	degre	es				51.14
Carbonate hardness, German degrees							21.31
Dry residue, mg/l						4,062.00	
Fe, mg/l							0.10
	Physical properties					Gas c	ontent

Physical properties			Gas content		
Transparency level	turbid		Oxidability mg O ₂ /l	0.00	
Color	yell	owish	Free CO ₂	0.00	
Smell	nos	smell	Aggressive CO ₂	0.00	
Taste					
Temperature, °C	21.0		pН	7.5	
Salt content formula Water description by sa (S.A. Schukarev Classif			53 SO4 36 HCO3 11 / K- phate-sodium	+NA 73 MG 19)	
Total hardness, English	degrees			64	
Total hardness, French	degrees			91	
Total hardness, America	an degrees			913	

//signed//

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
7	24	4	6.00	Groundwater

	Degree of aggressiveness						
Aggressiveness parameter		Grade of concrete	to concrete	to metal structures			
	W4	W6	W8	reinforcement	to metal structures		
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive				
pH value	Non-aggressive	Non-aggressive	Non-aggressive				
Aggressive carbonic acid content, mg/l (CO2)							
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive				
Ammonium salts content, mg/l (in NH4 equivalent)							
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive				
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive				
Sulphates content, mg/l Portland cement	Mildly aggressive	Non-aggressive	Non-aggressive				
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive				
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive				
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive			
Total content of chlorides and				wiedium-aggressive			
sulphates, g/l							
- fresh natural waters - aggressiveness of soil below					Medium-aggressive		
GWL to carbon steel					Mildly aggressive		

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	ype of sample
8	18		5		2.20		Groundwater
Cation	S		mg/l		mg-e	eq./l	% eq.
Ca			654.11		32.	64	14.77
Mg			747.11		61.4	44	27.81
K + Na	a		2,917.89		126.	.86	57.42
Anions	nions mg/l		mg-e	eq./l	% eq.		
SO_4			1,594.57		33.22		15.04
Cl		6,431.50 181.42		.42	82.11		
HCO ₃			384.30		6.3	80	2.85
CO ₃			0.00		0.0	00	0.00
Total i	ons				441	.89	
Total h	ardness, mg-eq./	1					94.08
Carbor	nate hardness, mg	g-eq./l					6.30
Non-ca	arbonate hardness	s, mg-e	eq./l				87.78
Total h	ardness, German	degre	es				263.80
Carbor	nate hardness, Ge	rman o	legrees				17.67
Dry residue, mg/l							2,912.03
Fe, mg/l							2.50
	Physical p	oroper	ies		Gas co	ontent	

Physical	properties		Gas co	ontent	
Transparency level	tu	rbid	Oxidability mg O ₂ /l	0.00	
Color	ye	llow	Free CO ₂	0.00	
Smell	nos	smell	Aggressive CO ₂	0.00	
Taste					
Temperature, °C	21.0		pН	7.1	
Salt content formula		M12.73 (CI	L 82 SO4 15 / K+NA 57 N	MG 28)	
Water description by sa (S.A. Schukarev Classif		chloride- so	dium-magnesium		
Total hardness, English	Total hardness, English degrees				
Total hardness, French	degrees			471	
Total hardness, America	an degrees			4,708	

//signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
8	18	5	2.20	Groundwater

		Degree of aggressiveness						
Aggressiveness parameter		Grade of concrete	to concrete	to metal structures				
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Strongly aggressive	Medium- aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Mildly aggressive Strongly aggressive				
Total content of chlorides and								
sulphates, g/l								
- fresh natural waters					Strongly aggressive			
- aggressiveness of soil below								
GWL to carbon steel					Medium-aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	Type of sample
9	19		5		3.00		Groundwater
Cation	S		mg/l		mg-e	q./l	% eq.
Ca			269.34		13.4	44	9.85
Mg			408.57		33.	50	24.62
K + Na	a		2,056.90		89.4	43	65.53
Anions	Anions		mg/l		mg-e	eq./l	% eq.
SO ₄	725.07 15.11		11	11.07			
Cl	Cl		4,075.50		114.96		84.24
HCO ₃			390.40		6.40		4.69
CO ₃			0.00		0.0	0	0.00
Total i	ons				272.	.94	
Total h	hardness, mg-eq./	1					47.04
Carbor	nate hardness, mg	-eq./l					6.40
Non-ca	arbonate hardness	s, mg-e	eq./l				40.64
Total h	ardness, German	degre	es				131.90
Carbon	nate hardness, Ge	rman o	legrees				17.95
Dry residue, mg/l							7,816.00
Fe, mg/l							2.50
	Physical p	oroper	ties		Gas c	ontent	

Physical J	oroperties		Gas c	ontent
Transparency level	tu	rbid	Oxidability mg O ₂ /l	0.00
Color	yel	llow	Free CO ₂	0.00
Smell	nos	smell	Aggressive CO ₂	0.00
Taste				
Temperature, °C	2	1.0	pН	7.3
Salt content formula Water description by sa		M7.93 (CL 84 SO4 11 / K+NA 66 MG 25) sodium chloride		
(S.A. Schukarev Classif	ication)			
Total hardness, English	165			
Total hardness, French	0			235
Total hardness, America	an degrees			2,354

Analysis conducted by: //signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
9	19	5	3.00	Groundwater

			Degree of aggressi	veness	
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures
	W4	W6	W8	reinforcement	to metal structures
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive		
pH value	Non-aggressive	Non-aggressive	Non-aggressive		
Aggressive carbonic acid content, mg/l (CO2)					
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Ammonium salts content, mg/l (in NH4 equivalent)					
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphates content, mg/l	N				
Portland cement	Non-aggressive	Non-aggressive	Non-aggressive	-	
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive		
Chlorides content, mg/l - for permanent immersion				Non-aggressive	
- for periodical wetting				Medium-aggressive	
Total content of chlorides and					
sulphates, g/l					
- fresh natural waters					Medium-aggressive
- aggressiveness of soil below					
GWL to carbon steel					Mildly aggressive

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Г	Type of sample
10	25		6		6.40		Groundwater
Cation	S		mg/l		mg-e	eq./1	% eq.
Ca			250.10		12,	48	17.77
Mg			163.43		13.	44	19.14
K + Na	a		1,018.89		44.	30	63.09
Anions	S	mg/l mg-eq./l		% eq.			
SO ₄		1,191.30 24.82		82	35.34		
Cl	21		1,336.50		37.70		53.69
HCO ₃	CO ₃		469.70		7.70		10.97
CO ₃			0.00		0.0	00	0.00
Total i	ons				140	.44	
Total h	hardness, mg-eq./	1					25.92
Carbo	nate hardness, mg	g-eq./l					7.70
Non-ca	arbonate hardness	s, mg-e	eq./l				18.22
Total l	nardness, German	degre	es				72.68
Carbo	nate hardness, Ge	rman o	legrees				21.59
Dry residue, mg/l							4,276.00
Fe, mg/l							0.10
Physical properties Gas content							ontent

Physical properties			Gas content			
Transparency level	tu	rbid	Oxidability mg O ₂ /l	0.00		
Color	yell	owish	Free CO ₂	0.00		
Smell	nos	smell	Aggressive CO ₂	0.00		
Taste						
Temperature, °C	21.0		pН	7.5		
Salt content formula Water description by sa (S.A. Schukarev Classif			54 SO4 35 HCO3 11 / K- phate-sodium	+NA 63 MG 19)		
Total hardness, English	Total hardness, English degrees					
Total hardness, French degrees13						
Total hardness, America	an degrees			1,297		

//signed//

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
10	25	6	6.40	Groundwater

		Degree of aggressiveness						
Aggressiveness parameter		Grade of concrete	to concrete	to metal structures				
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Mildly aggressive	Non-aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive				
Total content of chlorides and				wiedium-aggressive				
sulphates, g/l								
- fresh natural waters					Medium-aggressive			
- aggressiveness of soil below GWL to carbon steel					Mildly aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	ype of sample		
11	1 21		7		5.10		Groundwater		
Cations		mg/l			mg-eq./l		% eq.		
Ca		86.57		4.32		8.00			
Mg		145.92		12.00		22.23			
K + Na		866.21		37.66		69.77			
Anions		mg/l		mg-eq./l		% eq.			
SO ₄		344.84		7.18		13.31			
Cl		1,386.00		39.10		72.43			
HCO ₃		469.70		7.70		14.26			
CO ₃		0.00			0.00		0.00		
Total ions					107.	.96			
Total hardness, mg-eq./l							16.32		
Carbon	nate hardness, mg	7.70							
Non-ca	arbonate hardness	8.62							
Total h	ardness, German	45.76							
Carbon	nate hardness, Ge	21.59							
Dry rea	sidue, mg/l		3,086.00						
Fe, mg	z/1					2.00			
	Physical properties					Gas content			

Physical	oroperties		Gas content			
Transparency level	turbid		Oxidability mg O ₂ /l	0.00		
Color	yellow		Free CO ₂	0.00		
Smell	no smell		Aggressive CO ₂	0.00		
Taste						
Temperature, °C	21.0		pН	7.4		
Salt content formula Water description by sa (S.A. Schukarev Classif		M3.30 (CL 72 HCO3 14 SO4 13 / K+NA 70 MG 22) sodium chloride				
Total hardness, English Total hardness, French Total hardness, America	57 82 817					

Analysis conducted by: //signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
11	21	7	5.10	Groundwater

	Degree of aggressiveness							
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures			
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive				
Total content of chlorides and								
sulphates, g/l								
- fresh natural waters					Medium-aggressive			
- aggressiveness of soil below								
GWL to carbon steel					Mildly aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	ype of sample
12	22		8		3.70		Groundwater
Cation	S		mg/l		mg-e	eq./l	% eq.
Ca			673.34		33.	60	14.32
Mg			723.77		59.:	52	25.37
K + Na	a		3,254.82		141.	.51	60.31
Anions	ions mg/l mg-eq./l		% eq.				
SO_4		2,026.64 42.22		22	17.99		
Cl	Cl		6,583.50		185.71		79.15
HCO ₃		408.70		6.70		2.86	
CO ₃			0.00		0.0	00	0.00
Total i	ons				469.	.27	
Total h	ardness, mg-eq./	1					93.12
Carbor	nate hardness, mg	g-eq./l					6.70
Non-ca	arbonate hardness	s, mg-e	eq./1				86.42
Total h	ardness, German	degre	es				261.11
Carbonate hardness, German degrees							18.79
Dry residue, mg/l						13,620.00	
Fe, mg/l							0.10
	Physical properties Gas content						

Physical p	properties		Gas content		
Transparency level	turbid		Oxidability mg O ₂ /l	0.00	
Color	yell	owish	Free CO ₂	0.00	
Smell	nos	smell	Aggressive CO ₂	0.00	
Taste					
Temperature, °C	21.0		pН	7.2	
Salt content formula		M13.67 (CL 79 SO4 18 / K+NA 60 MG 25)			
Water description by sa (S.A. Schukarev Classif		chloride-sodium-magnesium			
Total hardness, English	degrees			327	
Total hardness, French	degrees			466	
Total hardness, America	an degrees			4,660	

Analysis conducted by:

//signed//

T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
12	22	8	3.70	Groundwater

	Degree of aggressiveness							
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures			
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Mildly aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Strongly aggressive	Strongly aggressive	Mildly aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Mildly aggressive Strongly aggressive				
Total content of chlorides and								
sulphates, g/l								
- fresh natural waters					Strongly aggressive			
- aggressiveness of soil below								
GWL to carbon steel					Medium-aggressive			

Item No.	Lab. No. of san	nple	Pit No.		Sampling depth, m	Т	Type of sample
13	23		8		4.90		Groundwater
~ .			17				
Cation	S		mg/l		mg-e	-	% eq.
Ca			86.57		4.3		7.92
Mg			169.27		13.	92	25.53
K + Na	a		834.52		36.	28	66.55
Anions	8		mg/l		mg-e	eq./l	% eq.
SO_4			376.06		7.65		14.03
Cl			1,395.90		39.38		72.22
HCO ₃			457.50		7.50		13.76
CO ₃			0.00		0.00		0.00
Total i	ons				109.05		
Total h	hardness, mg-eq./	1					18.24
Carbo	nate hardness, mg	g-eq./l					7.50
Non-ca	arbonate hardness	s, mg-e	eq./l				10.74
Total ł	nardness, German	degre	es				51.14
Carbo	nate hardness, Ge	rman c	legrees				21.03
Dry residue, mg/l							3,090.00
Fe, mg/l							1.50
	Physical 1	propert	ies		Gas content		
Transparency level turbid		Oxidability mg O ₂ /l		0.00			

Physical properties			Gas content		
turbid		Oxidability mg O ₂ /l	0.00		
yel	llow	Free CO ₂	0.00		
nos	smell	Aggressive CO ₂	0.00		
2	1.0	pН	7.7		
	M3.31 (CL 72 SO4 14 HCO3 14 / K+NA 67 MG 26)				
lt content ication)	chloride-sodium-magnesium				
Total hardness, English degrees64					
degrees			91		
an degrees			913		
	tur yel no s 2 lt content ïcation) degrees degrees	turbid yellow no smell 21.0 M3.31 (CL It content ication) degrees degrees	turbid Oxidability mg O ₂ /l yellow Free CO ₂ no smell Aggressive CO ₂ 21.0 pH M3.31 (CL 72 SO4 14 HCO3 14 / K- It content chloride-sodium-magnesium degrees degrees		

Analysis conducted by:

//signed//

T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
13	23	8	4.90	Groundwater

	Degree of aggressiveness							
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures			
	W4	W6	W8	reinforcement	to metal structures			
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive					
pH value	Non-aggressive	Non-aggressive	Non-aggressive					
Aggressive carbonic acid content, mg/l (CO2)								
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Ammonium salts content, mg/l (in NH4 equivalent)								
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive					
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphates content, mg/l Portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive					
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive					
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive				
Total content of chlorides and				incarani aggiossivo				
sulphates, g/l								
- fresh natural waters					Medium-aggressive			
- aggressiveness of soil below								
GWL to carbon steel					Mildly aggressive			

Item No.	Lab. No. of san	Lab. No. of sample			Sampling depth, m	Т	Type of sample	
14	14		Well (Frunze St., Dunayivka Village)		3.60		Groundwater	
			/1			/1	0/	
Cation	S		mg/l		mg-e	-	% eq.	
Ca			625.25		31.		41.06	
Mg			350.21		28.		37.90	
K + Na			367.74		15.		21.04	
Aniona	8		mg/l		mg-e		% eq.	
-	SO ₄		1,923.77	40.			52.74	
Cl			1,035.50		29.21 6.70		38.44	
5	HCO ₃		408.70			-	8.82	
-	CO ₃		0.00	0.0			0.00	
Total i		1			151.	.98	(0.00	
	hardness, mg-eq./						60.00	
	nate hardness, mg	· •	/1				6.70	
	arbonate hardness		*				53.30	
	hardness, German	0					168.24	
	hate hardness, Ge	rman (legrees				18.79	
	sidue, mg/l						4,660.00	
Fe, mg	Fe, mg/l						0.10	
	Physical properties			Gas content		ontent		
Transp	arency level	rency level transparent			Oxidability	mg O ₂ /l	0.00	
Color			yellowish		Free CO ₂		0.00	
Smell		no smell		Aggressive CO ₂		0.00		
Taste								
Tempe	erature, °C		21.0		рН		7.5	

Salt content formulaM4.71 (SO4 53 CL38 / CA41 MG 38)Water description by salt content
(S.A. Schukarev Classification)sulphate-chloride-calcium-magnesium

Total hardness, English degrees	211
Total hardness, French degrees	300
Total hardness, American degrees	3,003

Analysis conducted by: //signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
14	14	Well (Frunze St.	3.60	Groundwater
		Dunayivka Village)		

	Degree of aggressiveness					
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures	
	W4	W6	W8	reinforcement	to metal structures	
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive			
pH value	Non-aggressive	Non-aggressive	Non-aggressive			
Aggressive carbonic acid content, mg/l (CO2)						
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive			
Ammonium salts content, mg/l (in NH4 equivalent)						
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive			
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive			
Sulphates content, mg/l Portland cement	Strongly aggressive	Medium- aggressive	Mildly aggressive			
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive			
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive			
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive		
Total content of chlorides and						
sulphates, g/l						
- fresh natural waters					Medium-aggressive	
- aggressiveness of soil below						
GWL to carbon steel					Mildly aggressive	

Item No.	Lab. No. of san	nple	Pit No.	Sampling depth, m	Т	ype of sample
15	15 13		illing hole otovskogo Dunayivka Village)	3.70		Groundwater
Cation	0		~~/l		~ /l	0/
Cation	8		ng/l 3.53	mg-e	4	% eq. 11.65
Ca Mg			5.55 2.61	15.	-	22.61
K + Na	2		2.01 59.45	46.		65.75
Anions		,	1g/l	mg-e		% eq.
SO ₄			42.52	27.9		39.92
Cl		,	+2.32 8.20	27.		39.32
HCO ₃			4.50	14.		20.70
CO_3	-			0.00		0.00
Total i	ons	0	.00	140		0.00
	hardness, mg-eq./			110		24.00
	nate hardness, mg					14.50
	arbonate hardness	-				9.50
	ardness, German	0 1				67.30
	nate hardness, Ge	0	es			40.66
Dry rea	sidue, mg/l	C				4,280.00
Fe, mg	z/1					0.10
	Physical p	roperties			Gas co	ontent
Transp	arency level		sparent	Oxidability		0.00
Color			owish	Free CO ₂		0.00
Smell			smell	Aggressive	CO_2	0.00
Taste					0.02	0.00
			1.0	pН		7.3
Salt co	ntent formula		M4.62 (SO	4 40 CL 39 H	CO3 21 / K-	+NA 66 MG 23)
Water	description by sa Schukarev Classif			loride-sodium		,

Total hardness, English degrees	84
Total hardness, French degrees	120
Total hardness, American degrees	1,201

Analysis conducted by: //signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
15	13	Drilling hole (Kotovskogo	3.70	Groundwater
		St. Dunayivka Village)		

	Degree of aggressiveness					
Aggressiveness parameter		Grade of concrete		to concrete	to metal structures	
	W4	W6	W8	reinforcement	to metal structures	
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive			
pH value	Non-aggressive	Non-aggressive	Non-aggressive			
Aggressive carbonic acid content, mg/l (CO2)						
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive			
Ammonium salts content, mg/l (in NH4 equivalent)						
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive			
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive			
Sulphates content, mg/l Portland cement	Medium- aggressive	Mildly aggressive	Non-aggressive			
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive			
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive			
Chlorides content, mg/l - for permanent immersion - for periodical wetting				Non-aggressive Medium-aggressive		
Total content of chlorides and						
sulphates, g/l						
- fresh natural waters					Medium-aggressive	
- aggressiveness of soil below						
GWL to carbon steel					Mildly aggressive	

Item No.	Lab. No. of san	nple	Pit No.	Sampling depth, m	Т	Type of sample
16	15		Drilling hole (Frunze St., Dunayivka Village)	3.80		Groundwater
Cation	S		mg/l	mg-e		% eq.
Ca			432.86	21.		23.79
Mg			443.60	36.4		40.17
$\mathbf{K} + \mathbf{N}$	a		752.82	32.	73	36.04
Anion	S		mg/l	mg-e		% eq.
SO_4			2,379.50	49.:	57	54.59
Cl			997.50	28.	14	30.99
HCO ₃			799.10	13.10		14.43
CO ₃			0.00	0.00		0.00
Total i	ons			181	.62	
Total l	hardness, mg-eq./	1				58.08
Carbo	nate hardness, mg	g-eq./l				13.10
Non-ca	arbonate hardness	s, mg-e	eq./l			44.98
Total l	nardness, German	degre	es			162.86
	nate hardness, Ge	rman o	legrees			36.73
Dry re	sidue, mg/l					5,522.00
Fe, mg	g/l					0.25
	Physical J	oroper	ties		Gas c	ontent
Transp	barency level		turbid	Oxidability	mg O ₂ /l	0.00
Color	•	yellowish		Free CO ₂		0.00
Smell			no smell	Aggressive	CO_2	0.00
Taste						
Tempe	Temperature, °C 21.0			pН		7.0
Salt content formula M5.81 (SO4.55 CL.31 HCO3.14 / MG.40 K+NA.36)						

Salt content formulaM5.81 (SO4 55 CL 31 HCO3 14 / MG 40 K+NA 36)Water description by salt content
(S.A. Schukarev Classification)sulphate-chloride-magnesium-sodium

Total hardness, English degrees	204
Total hardness, French degrees	291
Total hardness, American degrees	2,907

Analysis conducted by: //signed// T.I. Zemliana

Item No.	Lab No. of sample	Pit No.	Sampling depth, m	Type of sample
16	15	Drilling hole (Frunze St.	3.80	Groundwater
		Dunayivka Village)		

Aggressiveness parameter		Grade of concrete		to concrete	to metal structures
	W4	W6	W8	reinforcement	to metal structures
Bicarbonate alkalinity, mg-eq./l (HCO3)	Non-aggressive	Non-aggressive	Non-aggressive		
pH value	Non-aggressive	Non-aggressive	Non-aggressive		
Aggressive carbonic acid content, mg/l (CO2)					
Magnesium salts content, mg/l (in Mg equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Ammonium salts content, mg/l (in NH4 equivalent)					
Caustic alkalis content, mg/l (in K and Na ions equivalent)	Non-aggressive	Non-aggressive	Non-aggressive		
Total content of chlorides, sulphates, nitrates and other salts, mg/l	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphates content, mg/l Portland cement	Strongly aggressive	Strongly aggressive	Medium- aggressive		
Slag portland cement	Non-aggressive	Non-aggressive	Non-aggressive		
Sulphate-resistant cements	Non-aggressive	Non-aggressive	Non-aggressive		
Chlorides content, mg/l - for permanent immersion				Non-aggressive	
- for periodical wetting				Medium-aggressive	
Total content of chlorides and					
sulphates, g/l					
- fresh natural waters					Medium-aggressive
- aggressiveness of soil below GWL to carbon steel					Mildly aggressive